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Abstract

Physics provides new, tantalizing problems that we solve by developing and implementing
innovative and effective geometric tools in nonlinear algebra. The techniques we employ also
rely on numerical and symbolic computations performed with computer algebra.

First, we study solutions to the Kadomtsev-Petviashvili equation that arise from singu-
lar curves. The Kadomtsev-Petviashvili equation is a partial differential equation describing
nonlinear wave motion whose solutions can be built from an algebraic curve. Such a surpris-
ing connection established by Krichever and Shiota also led to an entirely new point of view
on a classical problem in algebraic geometry known as the Schottky problem. To explore the
connection with curves with at worst nodal singularities, we define the Hirota variety, which
parameterizes KP solutions arising from such curves. Studying the geometry of the Hirota
variety provides a new approach to the Schottky problem. We investigate it for irreducible
rational nodal curves, giving a partial solution to the weak Schottky problem in this case.

Second, we formulate questions from scattering amplitudes in a broader context using
very affine varieties and D-module theory. The interplay between geometry and combina-
torics in particle physics indeed suggests an underlying, coherent mathematical structure
behind the study of particle interactions. In this thesis, we gain a better understanding of
mathematical objects, such as moduli spaces of point configurations and generalized Euler
integrals, for which particle physics provides concrete, non-trivial examples, and we prove
some conjectures stated in the physics literature.

Finally, we study linear spaces of symmetric matrices, addressing questions motivated by
algebraic statistics, optimization, and enumerative geometry. This includes giving explicit
formulas for the maximum likelihood degree and studying tangency problems for quadric
surfaces in projective space from the point of view of real algebraic geometry.
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Introduction

In recent years, modern algebraic geometry has been employed to solve problems in
engineering, physics, and other sciences. Furthermore, this interplay has inspired new de-
velopments in classical and applied algebraic geometry thanks to the insights and intuitions
emerging in the natural sciences. The occurrence of nonlinear equations in applied mathe-
matics and the advancement of computational methods in computer algebra have promoted
the development of nonlinear algebra [BÇD+21, MS21b]. This is a diverse and emerging
field of mathematics combining techniques mainly from modern algebraic geometry, combi-
natorics, differential algebra, and commutative algebra.

In this thesis, we use methods from algebraic geometry and nonlinear algebra to explore
open questions arising in the study of two distinct branches of physics: integrable systems
and scattering amplitudes. In addition, we study classical problems in algebraic geometry by
addressing new questions motivated by algebraic statistics, optimization, and enumerative
geometry. The new findings are presented in the three major chapters (Chapters 2–4), each
of which begins with an introduction to the problems under consideration and a summary
of our main results. Symbolic and numerical computations play an essential role in proving
our results and working out many of the examples in this thesis. The mathematical software
programs we mainly use are Macaulay2, Maple, Julia, and SageMath. The supplementary
codes and research data supporting our findings are guaranteed to be freely accessible and
suitable for reuse by interested users at the website https://mathrepo.mis.mpg.de. This is
an online repository for mathematical research data MathRepo which we describe in [FG22].

We now describe the results of the thesis in more detail. In the interplay between alge-
braic geometry and integrable systems, the study of complex algebraic curves is connected
to the Kadomtsev–Petviashvili (KP) equation. This is a nonlinear partial differential equa-
tion whose solution function represents the amplitude of shallow water waves. Krichever
provided an algebro-geometric procedure to construct KP solutions from a point on a com-
plex algebraic curve [Kri77]. Chapter 2 in this thesis studies KP solutions whose underlying
algebraic curves undergo tropical degenerations. The curve in the limit becomes singular
with possibly many irreducible components. The limiting object can be described entirely
combinatorially, and we use such combinatorial data to perform a degeneration also at the
level of the KP solution. We show that this procedure can give rise to solitons. These are
a subset of KP solutions that have been proven to have a fascinating connection with the
theory of total positivity for the Grassmannian [KW14].

Our interest in KP solutions is also driven by how they relate to the Schottky problem
[Gru12]. This is a classical problem in algebraic geometry concerning characterizing Jacobian
varieties among abelian varieties. There is currently no complete algebro-geometric solution
to the Schottky problem. The only known solution [Shi86] employs analytical tools as well as

https://mathrepo.mis.mpg.de


14 List of Tables

the connection to KP theory. We study the Schottky problem when restricting to irreducible
rational nodal curves and provide a solution for curves up to genus nine. The proof relies
on symbolic computations. Our novel approach provides a way of formulating the Schottky
problem via the variety that parametererizes degenerate KP solutions.

In Chapter 3, we transition from water waves to elementary particles. We present a line
of research built around problems arising in particle physics. This field of study explores
the interactions of elementary particles that constitute matter and radiation. Scattering
amplitudes compute the probabilities of particular outcomes of interactions taking place in
particle accelerators. In the recent past, the increase in interactions among theoretical physi-
cists working in scattering amplitudes and mathematicians has led to significant advances
in both disciplines. New interesting mathematical problems and brand-new geometric ob-
jects were developed in works by, among others, Arkani-Hamed, Cachazo, Sturmfels, and
Williams, [AHT14, BCFW05, ST21, Wil21].

In both sections of Chapter 3, we reduce a physics problem to studying properties and
geometry of a very affine variety, that is, a closed subvariety of an algebraic torus. In Section
3.1 the very affine varieties of interest are moduli spaces of point configurations. They ap-
pear when counting the number of critical points of the potential function, or equivalently,
the number of solutions to the scattering equations [CEGM19, ST21]. We connect the study
of such solutions to computing the maximum likelihood degree of the likelihood function
in algebraic statistics. We introduce the likelihood degeneration, which is a type of degen-
eration providing effective ways to compute the numbers of interest. Using the likelihood
degeneration, we are able to confirm the computations appearing in the physics literature as
well as give new results using numerical computations.

In Section 3.2, the very affine varieties of interest are complements in an algebraic torus
of a finite set of hypersurfaces. In this case, the motivation comes from the study of Feyn-
man integrals. These are mathematical expressions used to calculate the probabilities of
some elementary particle interactions, as we explain in Appendix A. We study the more gen-
eral setting of vector spaces associated to a family of generalized Euler integrals, to which
Feynman integrals provide non-trivial examples. Using tools from homological algebra and
D-module theory, we prove that the dimension of such vector spaces coincides with the Euler
characteristic of very affine varieties given by hypersurfaces complements. A common theme
to both sections is the connection to the maximum likelihood degree. In particular, the
essential tool is the equality between the maximum likelihood degree and the Euler charac-
teristic proved by Huh [Huh13] for smooth varieties.

Finally, Chapter 4 is concerned with classical themes in algebraic geometry. We study
linear spaces of symmetric matrices with the goal of broadening the understanding of these
matrix spaces by approaching them from various perspectives. Although these objects ap-
pear to be simple, they have a significant impact and are encountered in a broad range of
mathematics. In Section 4.1, we study pencil of quadrics, i.e. two-dimensional linear sub-
spaces in the space of (real or complex) symmetric matrices, according to the classification
by Segre symbols [HP52]. We address questions motivated by algebraic statistics and op-
timization. In our main result in this section, we provide explicit formulas for the number
of critical points of the log-likelihood function, when restricting to a pencil of quadrics, in
terms of Segre symbols. Section 4.2 examines quadratic surfaces in the projective space that
are tangent to nine given figures. These figures can be points, lines, planes or quadrics.
The numbers of tangent quadrics were determined by Hermann Schubert in 1879. We study
the associated systems of polynomial equations, also in the space of complete quadrics, and
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we solve them using certified numerical methods. We present explicit instances where all
tangent quadrics are real. Our results represent a first step toward the problem of deciding
whether there exist nine real quadrics such that all complex solutions are real.

For the sake of readability, we briefly discuss the outline of the thesis. Every chapter
is divided into two sections. Chapter 1 presents the notions required to state the Schottky
problem, which will be central in Chapter 2, along with the basic concepts from D-module
theory that will help in understanding Chapter 3. Furthermore, most of the contents of this
thesis have appeared in slightly altered form in several papers. In particular, the two sections
of Chapter 2 are based on [AFMS23] and [FM22], respectively. Analogously, Chapter 3
presents our research results from [ABF+23] and [AFST22]. Finally, [FMS21] and [BFS21]
serve as the basis for Chapter 4.

A fundamental requirement for reading this thesis is being versatile. To tackle mathe-
matical problems that arise in the natural sciences, it is in fact very helpful to be equipped
with a large toolbox of diverse mathematical languages from which to choose the one that
best fits the problem. It is a sort of adaptation, as required by nature. Just as an organism
must evolve and develop traits that are best suited to their environment in order to survive
and thrive, in this thesis we choose the most appropriate mathematical tools and methods
at our disposal to solve a problem arising in physics.
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Chapter 1

Background

This chapter describes the key ingredients in developing Chapters 2 and 3. Section 1.1
discusses Jacobian varieties of algebraic curves, Abel’s theorem, and the Schottky problem.
In particular, the last will be central in Chapter 2, where we will study such a classical
problem in algebraic geometry in relation to degeneration of curves. For extended discussions
and proofs, we refer to [ACGH85, Gru12, Mir95]. Section 1.2 reviews relevant definitions
and results regarding D-module theory, based mainly on [SST00, SS19]. These notions will
be helpful to understand Section 3.2.

1.1. Jacobian varieties of algebraic curves
Let X be a smooth projective curve of genus g over C. Then X can be thought of as a

compact Riemann surface and, in what follows we will use the two terms interchangeably.
Recall that the first homology group H1(X,Z) of X is a free abelian group of rank 2g. It

is an elementary fact that one can always fix a symplectic basis α1, β1, α2, β2, . . . , αg, βg for
H1(X,Z). This is just a basis such that αi ⋅ βj = δij , where δij denotes the Kronecker-Delta.

For any choice of a symplectic basis, Riemann proved that one can construct a basis of
holomorphic differentials ω1, . . . , ωg such that the matrix B whose j-th column is given as

Bj = (∫
βj

ω1, . . . ,∫
βj

ωg)

T

is a complex, symmetric g × g matrix with positive definite imaginary part. We call it the
Riemann matrix associated to the curve X. Furthermore, in this setting, we have

Ai = (∫
αi

ω1, . . . ,∫
αi

ωg)
T

= ei,

where ei denotes the i-th vector in the standard basis of Zg. It is a well-known fact that the
2g vectors Ai,Bj are R-linearly independent in Cg and therefore generate a g-dimensional
lattice Λ = Zg + B ⋅ Zg in Cg. The Jacobian of the Riemann surface X is defined as the
quotient

Jac(X) ∶= Cg
/Λ = Cg

/(Zg
+B ⋅Zg

). (1.1.1)

Notice that Jac(X) is also an abelian group. Moreover, the Jacobian variety of an algebraic
curve X can also be introduced via a definition that does not rely on any basis choice.
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Consider the map that integrates holomorphic 1-forms along 1-cycles, i.e.,

ϕ ∶ H1(X,Z) Ð→ H0
(X,ωX)

∨

γ z→ (ω ↦ ∫
γ
ω) ,

where the V ∨ stands for the dual space of V . The image of the map ϕ is a discrete lattice
of maximal rank inside H0(X,ωX)

∨. Therefore, the Jacobian can also be defined as the
quotient by this lattice, namely

Jac(X) ∶= H0
(X,ωX)

∨
/H1(X,Z).

The definition in (1.1.1) thus gives a description in coordinates of the Jacobian of an algebraic
curve. The map taking a curve X into its Riemann matrix provides an explicit description
of the map taking the curve X into its Jacobian Jac(X).

Evaluating Riemann matrices is a rich and active research topic, implementations of
algorithms to numerically evaluate Riemann matrices are available in Maple [DHB+04] and
SageMath [BSZ19]. Here we illustrate in an example how to compute the Riemann matrix
of a hyperelliptic curve using SageMath [The22].

Example 1.1.1. Consider a genus two curve y2 = f(x) where f(x) is a polynomial of degree
six given by

f(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6).

The Riemann matrix of such a curve is generated in SageMath as follows

from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
R.<x,y> = QQ[]
f = y^2-(x-1)*(x-2)*(x-3)*(x-4)*(x-5)*(x-6)
S = RiemannSurface(f,prec=100)
M = S.riemann_matrix()

One can check that the output is a 2 × 2 symmetric complex matrix with positive definite
imaginary part. The class RiemannSurface is used to model the Riemann surface determined
by a plane algebraic curve over a subfield of the complex numbers. The Riemann matrix is
then determined numerically with 100 bits of precision, using certified homotopy continuation
methods.

1.1.1. Abel-Jacobi map and the theta function
To fully exploit the construction of the Jacobian of an algebraic curve X, we must

explicitly relate the Jacobian to the curve itself. This connection is provided by the Abel-
Jacobi map.

Choose a base point p0 ∈ X. For each point p ∈ X, we denote γp the path on X from p0
to p. The map sending a point p ∈ X to the element of H0(X,ωX)

∨ defined by integration
along γp is not well-defined since the integral depends on the path. Such a map is indeed
well-defined modulo the subgroup Λ defined above. Hence, one considers the Abel-Jacobi map

µ ∶X Ð→ Jac(X)

p z→ µ(p) ∶= (∫
γp

ωi)
i=1,...,g

mod Λ.
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Changing the base point p0 changes the map by a translation of the torus. Furthermore, the
Abel-Jacobi map µ extends to divisors on X by linearity, i.e., µ(∑nipi) = ∑niµ(pi), and
hence we can speak of the value of the map µ on divisors. The following result assures the
invariance of the Abel-Jacobi map under the linear equivalence between divisors on X.

Theorem 1.1.2 (Abel’s Theorem). Let D and D′ be effective divisors of degree d on a
smooth algebraic curve X. Then D is linearly equivalent to D′ if and only if µ(D) = µ(D′).

There exist several interpretations and fundamental consequences of Abel’s theorem. For
instance, it implies that the Abel-Jacobi map induces an injection of abelian groups from
the space of degree 0 divisor classes to the Jacobian. Later Jacobi proved that this map
is also surjective. This result is known as Jacobi inversion theorem. A more geometric
interpretation is the following. Recall that the divisor div(f) associated to a meromorphic
function on a compact Riemann surface X has degree 0. However, this is not a sufficient
condition. Abel’s theorem gives a precise criterion to check if a degree 0 divisor comes from a
meromorphic function of X. For more discussions and proofs we refer to [ACGH85, Mir95].

Another consequence of Abel’s theorem, combined with Riemann-Roch, is that the
Zariski closure of the image of the map µ(g−1) ∶ Xg−1 → Jac(X) is an irreducible divisor
in Jac(X), called the theta divisor

Θ ⊂ Jac(X).
It corresponds to an analytic hypersurface in H0(X,ωX)

∨ defined as the zero locus {z ∈
Cg ∣ θ(z,B) = 0}, where θ(z,B) is the theta function, and B denotes the Riemann matrix of
the curve X. The importance of the theta divisor on the Jacobian of a curve X stems for the
fact that it closely reflects the geometric properties of the curve itself. The next paragraph
describes the theta function explicitly.

For any integer g ≥ 1, let Hg denote the Siegel upper half space which consists of all
complex symmetric g × g with positive definite imaginary part. There is an explicit way of
embedding the Jacobian variety of an algebraic curve X into a projective space by using the
so called (universal) theta function. This is the holomorphic function

θ ∶ Cg
×H

g
Ð→ C (z,B)z→ ∑

c∈Zg

exp[πicTBc + 2πicT z]. (1.1.2)

The restriction on the choice of the matrices ensures that it is an absolutely convergent
series. For fixed B, it has the following easily verified property in z:

θ(z +Bc + d,B) = exp[−πicTBc − 2πicT z] ⋅ θ(z,B), for all c,d ∈ Zg.

As a consequence, the zero locus of θ(z,B) is invariant under the shifts by the lattice Zg +

B ⋅Zg, and thus the theta divisor is well defined.
Starting from the theta function θ(z,B) we can define a modification of it, namely the

theta function with characteristic m,m′ ∈ {0,1}g. This is the complex analytic function

θ [
m
m′
] (z∣B) = ∑

c∈Zg

exp [πi(c + m
2
)

T

τ (c + m
2
) + 2πi(c + m

2
)

T

(z + m
′

2
)] . (1.1.3)

Evaluating theta functions with characteristic at the point z = (0, . . . ,0) gives the so called
theta constants. The importance of such variants of the theta function is due to the fact
that they provide explicit embeddings of the Jacobian of an algebraic curve inside some
projective space. The survey [Gru12] by Grushevsky provides a modern overview of the
possible embeddings.

Mathematical software packages are available to compute also with theta functions
[AC21, FJK19, SD16]. We illustrate this with an example.
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Example 1.1.3 (Example 1.1.1 continued). Given the Riemann matrix B for the hyperel-
liptic genus 2 curve computed in Example 1.1.1, the following lines provide an instance of
how to evaluate the theta function at a point:

Pkg.add("Theta")
B = [0.59213731583710508241952598139 + 0.52072406882870882285671333256*im

-0.59213731583710508241952598138 - 0.34855310487952156451686559943*im]
[-0.59213731583710508241952598140 - 0.34855310487952156451686559942*im
1.0000000000000000000000000000 + 0.69710620975904312903373119884*im]

R = RiemannMatrix(B, siegel=true, epsilon=1.0e-12, nderivs=4);
z = [1.041+0.996*im; 1.254+0.669*im];
theta(z, R)

This is using the Julia package Theta developed by Agostini and Chua, see [AC21].

1.1.2. The Schottky problem
The Jacobian variety of an algebraic curve X is a principally polarized abelian variety.

This means that it is a projective variety which is also an abelian group. We write Ag for
the set of isomorphism classes of principally polarized abelian varieties of dimension g. In
general, this space can be identified as

Ag ≃ Hg/Sp(2g,Z),

where Sp(2g,Z) denotes the symplectic group with action defined by

(
E F
G H

) ⋅B = (GB +H)−1
(EB + F ).

At this point, we have the main tools required to introduce the Schottky problem. Let Mg

denote the moduli space of smooth algebraic curves of genus g. The map that associates to
each curve its Jacobian is a map of moduli spaces called the Torelli map

J ∶Mg → Ag X ↦ Jac(X).

Torelli proved the injectivity of the map J , in other words a curve is identified up to isomor-
phism by its Jacobian. This result is known as Torelli’s theorem. The Schottky problem is a
classical problem in algebraic geometry asking to characterize Jacobian varieties amongst all
abelian varieties. To be precise, the Schottky problem asks to find the defining equations for
the locus of Jacobians, defined as the Zariski closure of J(Mg) in Ag, which is referred to
as the Schottky locus in the literature. In other words, this is the locus of Riemann matrices
in the Siegel upper half space that are of algebraic curves. The weak Schottky problem is to
find an ideal whose zero locus contains the locus of Jacobians as an irreducible component.

Recall that dimMg = 3g − 3, while dimAg = (
g+1

2 ). These numbers coincide when g ≤ 3,
thus in genus g ≤ 3 the Schottky problem is trivial, in the sense that every polarized abelian
variety is the Jacobian of a curve. Instead, for genus g ≥ 4, the inclusion of the Schottky
locus inside Ag is proper. In particular, Igusa [Igu82] proved that in genus 4 the locus of
Jacobian varieties is an analytic irreducible hypersurface in the space of abelian varieties.

For genus larger than 5 the Schottky problem has proven to be difficult, with only partial
results for genus 5 and weak solutions for higher genus. Many approaches to the Schottky
problem have been developed (e.g., [ADC84, Igu82]) and an explicit solution to the weak
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Schottky problem was provided in [FGSM21] and investigated numerically for genus 5 in
[AC21]. However, a complete algebro-geometric solution is still missing, and the only known
solution was given by Shiota [Shi86] through the connection to the KP equation. This will
be discussed in the next chapter. Finally, the proof of Theorem 2.2.3 in this thesis gives
a solution to the weak Schottky problem for irreducible rational nodal curves, which we
provide for g ≤ 9.

1.2. D-modules
This section introduces the fundamental concepts of D-module theory that are required

to comprehend Section 3.2. We review the Fundamental Theorem of Algebraic Analysis,
introduce holonomic D-ideals, and discuss their holonomic rank. We state the CKK theorem,
which will play a key role in proving the main theorem in Subsection 3.2.3. We conclude
by defining Bernstein–Sato polynomial and ideals. The major interest of such D-modules
is the algebraic approach they provide to the theory of linear partial differential equations.
However, D-modules provide a useful tool also for concrete problems in applied algebraic
geometry [BÇD+21]. In Section 3.2, D-modules will be shown to be powerful tools for
studying generalized Euler integrals and problems in particle physics. The presentation we
give follows closely the ones in [HTT08, SST00, SS19].

For any integer n ≥ 1, the n-th Weyl algebra, denoted

Dn ∶= C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩,

or just D if the number of variables is clear from the context, is the non-commutative ring
gathering linear differential operators with polynomial coefficients. Formally, it is the free
associative C-algebra generated by x1, . . . , xn and ∂1, . . . , ∂n modulo the following relations:
all generators are assumed to commute, except ∂i and xi. Their commutator is

[∂i, xi] ∶= ∂ixi − xi∂i = 1 ≠ 0, for i = 1, . . . , n. (1.2.1)

This is in accordance with Leibniz’ rule for determining the derivative of a product of func-
tions. One can generalize the Weyl algebra by considering a ring of differential operator in
which the coefficients are allowed to be rational functions in n variables. Such a generaliza-
tion gives rise to the rational Weyl algebra

Rn = C(x1 . . . , xn)⟨∂1, . . . , ∂n⟩,

where C(x1, . . . , xn) denotes the field of rational functions over the complex numbers. Notice
that Dn is a subalgebra of Rn. Furthermore, the multiplication in Rn is defined by extending
the product rule (1.2.1) from polynomials to rational functions, i.e.,

∂ir(x) = r(x)∂i +
∂r

∂xi
(x), for all r ∈ C(x1, . . . , xn).

We are interested in studying left modules M over the Weyl algebra D or the rational Weyl
algebra R. The action of a differential operator to a function will be denoted by the symbol ●.,
i.e.,

● ∶ D ×M →M (resp. ● ∶ R ×M →M).

For instance, the natural action of the Weyl algebra on polynomials p ∈M = C[x1, . . . , xn] is
as follows

∂i ● p =
∂p

∂xi
, xi ● p = xip, for i = 1, . . . , n. (1.2.2)
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In this notation, ∂i ⋅ xi = xi ⋅ ∂i + 1 ∈Dn, whereas ∂i ● xi = 1 ∈ C[x1, . . . , xn].

We use the notation θi ∶= xi∂i for the i-th Euler operator and θ for the vector (θ1, . . . , θn)
⊺ ∈

Dn. We will later also need the ring of global linear differential operators

DGn
m
∶= C[x±1

1 , . . . , x±1
n ]⟨∂1, . . . , ∂n⟩ = C[x±1

1 , . . . , x±1
n ]⟨θ1, . . . , θn⟩ (1.2.3)

on the algebraic n-torus Gn
m = Spec(C[x±1

1 , . . . , x±1
n ]). In the rest of this work, we will be less

strict about notation and used (C∗)n both for the algebraic n-torus Gn
m and its analytification

(C∗)n, since it is clear from the context which one is meant. Here and in Subsection 3.2.2,
we stick to the more careful distinction, which is also the standard in D-module theory.

In what follows, we study left D-modules of the form D/I for some left ideal I in the
Weyl algebra D, and left D-ideals, unless stated otherwise. We will refer to them simply as
D-modules and D-ideals. Those ideals encode systems of linear partial differential equations
with polynomial coefficients in algebraic terms. Likewise, rational coefficients lead to modules
over the rational Weyl algebra Rn.

Example 1.2.1. The Weyl algebra D has a natural action on many function spaces. This
turns many function spaces into D-modules. For instance, if F is the space of holomorphic
functions on a domain Cn, such that F is closed under taking partial derivatives, the action
of the Weyl algebra D on F is defined as in (1.2.2) where the polynomial p is replaced by a
function f ∈ F .

Definition 1.2.2. Let Mod(D) denote the category of D-modules. Consider a D-ideal I
and M ∈Mod(D). We call the solution space of I in M the C-vector space

SolM(I) ∶= {m ∈M ∣P ●m = 0}.

1.2.1. Holonomicity
Any element P of D has a unique normally ordered expression

P = ∑
(a,b)∈C

cab ⋅ x
a∂b, (1.2.4)

where C is a finite subset of Z2n, cab ∈ C ∖ {0}, xa = xa1
1 ⋯x

an
n , and ∂b = ∂b1

1 ⋯∂
bn
n . This fact

gives us a natural C-vector space isomorphism between the commutative ring of polynomials
in 2n variables C[x, ξ] ∶= C[x1, . . . , xn, ξ1, . . . , ξn] and the Weyl algebra:

ϕ ∶ C[x, ξ]→D, xaξb
↦ xa∂b.

Example 1.2.3. Consider n = 2, and P = ∂1∂
2
2x1x

2
2 − ∂2x2. Using a built-in command in

Macaulay2 [LT]

D = QQ[x1,x2,d1,d2, WeylAlgebra => {x1=>d1,x2=>d2}];
d1*d2^2*x1*x2^2-d2*x2

we find its normal expression as x1x
2
2∂1∂

2
2 + 4x1x2∂1∂2 + x

2
2∂

2
2 + 2x1∂1 + 3x2∂2 + 1.

Given a real vector (u1, . . . , un, v1, . . . , vn) ∈ R2n, this is a weight vector for the Weyl
algebra if

ui + vi ≥ 0 for i = 1, . . . , n.
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The associated graded ring gr(u,v)(D) of the Weyl algebra D with respect to the weight
vector (u, v) is the C-algebra generated by

{x1, . . . , xn} ∪ {∂i ∶ ui + vi = 0} ∪ {ξi ∶ ui + vi > 0},

where all the variables are assumed to commute except for xi and ∂i, consistently with
(1.2.1). In fact, when u, v ∈ Z2n, gr(u,v)(D) is the associated graded ring under the filtration
of D by the weights (u, v):

gr(u,v)(D) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

D if u + v = 0
C[x, ξ] if u + v > 0
a mixture of the above otherwise

Set m =max(a,b)∈C(a ⋅ u + b ⋅ v). The initial form of P ∈D is defined as

in(u,v)(P ) = ∑
(a,b)∈C

a⋅u+b⋅v=m

cab ∏
k∶uk+vk>0

xak

k ξbk

k ∏
k∶uk+vk

xak

k ∂bk

k ∈ gr(u,v)(D),

and in(u,v)(0) = 0. In words, one selects the terms of maximum weight m in the normally
ordered expression (1.2.4), and then replace ∂i by ξi for all i such that ui + vi > 0.

Given a real weight vector, for a D-ideal I, the vector space in(u,v)(I) = C{in(u,v)(P ) ∣P ∈
I} is the initial ideal of I. In particular, this is a left ideal in the associated graded algebra
gr(u,v)(D), [SST00, Corollary 1.1.2]. Computing initial ideals in(u,v)(I) and their associated
Gröbner bases via the Buchberger algorithm in D is a key step towards many practical
applications of D-modules, e.g., [ALSS20].

A significant case is when u is the zero vector and v is the all-one vector e = (1, . . . ,1).

Definition 1.2.4. Fix e = (1, . . . ,1) and 0 = (0, . . . ,0) ∈ Rn. Given any D-ideal I, the char-
acteristic variety Char(I) is the vanishing set of the characteristic ideal ch(I) ∶= in(0,e)(I)
in C2n = Cn

x ×Cn
ξ . The characteristic ideal is the ideal in the commutative polynomial ring

C[x, ξ] which is generated by the symbols in(0,e)(P ) of all differential operators P ∈ I.

In the theory of D-modules, one refers to Char(I) as the characteristic variety of the
D-module D/I. The characteristic variety is the object of the following theorem, established
by Sato, Kawai, and Kashiwara in [SKK73]:

Theorem 1.2.5 (Fundamental Thorem of Algebraic Analysis). Let I be a proper D-ideal.
Every irreducible component of its characteristic variety Char(I) has dimension at least n.

Definition 1.2.6. A D-ideal I is holonomic if dim(ch(I)) = n, i.e., if the dimension of its
characteristic variety in C2n is minimal. Fix the field C(x) = C(x1, . . . , xn) and C(x)[ξ] =
C(x)[ξ1, . . . , ξn]. The holonomic rank of I is

rank(I) ∶= dimC(x)(C(x)[ξ]/C(x)[ξ]ch(I)) = dimC(x)(R/RI).

Both dimensions count the standard monomials for a Gröbner basis of RI in R with respect
to e.

Example 1.2.7. Let n = 1 and consider the D-ideal generated by the operator

P = pm(x)∂
m
+ pm−1(x)∂

m−1
+⋯ + p0(x), with pm ≠ 0.

This operator also defines a linear ordinary differential equation of order m. We have
in(0,e)(I) = ⟨am(x)ξ

m⟩, hence I is holonomic or rank m. Here is how to compute the using
the initial ideal and the holonomic rank in Macaulay2 using the package Dmodules [LT]:
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needsPackage "Dmodules"
makeWA(QQ[x])
J = ideal((x^2+2*x+1)*dx^2+(x^3-1)*dx+(x-1))
inw(J,{0,1})
holonomicRank J

As expected the initial ideal is principally generated by (x2 + 2x + 1)ξ2 and the holonomic
rank equals 2.

Furthermore, if a D-ideal I is holonomic, then rank(I) is finite. But, the converse is not
true. There exists holonomic ideals with infinite holonomic rank. For some examples and a
proof of this fact we refer to [SST00, Proposition 1.4.9].

We finally conclude with the last definition required to state the famous CKK theorem.

Definition 1.2.8. The singular locus Sing(I) of I is the variety in Cn defined by

Sing(I) ∶= (ch(I) ∶ ⟨ξ1, . . . , ξn⟩
∞
) ∩C[x1, . . . , xn].

Geometrically, the singular locus is the closure of the projection of Char(I)∖(Cn×{0}) onto
the first n coordinates of C2n. If I is holonomic, then Sing(I) is a proper subvariety of Cn.

Theorem 1.2.9 (Cauchy–Kowalevskaya–Kashiwara). Let I be a holonomic D-ideal and let
U be an open subset of Cn ∖ Sing(I) that is simply connected. Then the space of holomor-
phic functions on U that are solutions to I has dimension equal to rank(I). In symbols,
dim(Sol(I)) = rank(I).

The application of this theorem to determine the dimension of the solution space of a
D-ideal and its holonomic rank in relation to the theory of GKZ systems will be crucial in
Subsection 3.2.3. and we also refer to this subsection for some fascinating explicit examples.

1.2.2. Bernstein–Sato polynomial
We now recall Bernstein–Sato polynomials and ideals. These will be of main importance

in Section 3.2. Let f ∈ C[x1, . . . , xn] be a polynomial and assume s is a new formal variable
that we adjoin to the Weyl algebra Dn such that s commutes with all xi and ∂i. Consider
the Dn[s]-module C[x1, . . . , xn, f

s, f−1, s]. The natural action of Dn[s] on this module is
given by

∂i ● f
s
= s ⋅

∂f

∂xi
⋅ fs−1.

The s-parametric annihilator of fs is the Dn[s]-ideal

AnnDn[s](f
s
) ∶= {P ∈Dn[s] ∣ P ● f

s
= 0} . (1.2.5)

The next example shows how to compute it using Singular [DGPS22].

Example 1.2.10. Let f = (x − 1)(x − 2) ∈ C[x]. The s-parametric annihilator of fs can be
computed running the following code in the computer algebra system Singular using the
library dmod_lib [ABL+10]:

LIB "dmod.lib";
ring r = 0,x,dp; poly f = (x-1)*(x-2);
def A = operatorBM(f); setring A;
LD; // s-parametric annihilator of f^s
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In this case, the Dn[s]-ideal AnnDn[s](f
s) is generated by the operator P = f∂x − s∂x ● f.

Definition 1.2.11. The Bernstein–Sato polynomial bf ∈ C[s] of a polynomial f ∈ C[x1, . . . , xn]

is the unique monic polynomial of smallest degree for which there exists Pf ∈Dn[s] such that

Pf(s) ● f
s+1
= bf(s) ⋅ f

s. (1.2.6)

If f is smooth, bf = s+1. Moreover, the converse is also true [BM96]. Observe that while
the Bernstein polynomial is unique, the Bernstein–Sato operator Pf is unique only modulo
AnnDn[s](f

s+1). It is known that bf is non-trivial and that its roots are negative rational
numbers. Bernstein–Sato polynomials were originally studied to construct a meromorphic
continuation of the distribution-valued function s ↦ fs, which is a priori defined only for
complex numbers s ∈ C with positive real part. Nowadays, it is an important object of
study in singularity theory, among others in work on the monodromy conjecture such as
[BvdVVW21, BvdVWZ21].

For ℓ > 1 polynomials f1, . . . , fℓ, one needs to study Bernstein–Sato ideals instead. The
Bernstein–Sato ideal of (f1, . . . , fℓ) is the ideal B(f1,...,fℓ)

in C[s1, . . . , sℓ] consisting of all
polynomials p ∈ C[s1, . . . , sℓ] for which there exists P ∈Dn[s1, . . . , sℓ] s.t.

P ● (fs1+1
1 ⋯f sℓ+1

ℓ ) = p ⋅ fs1
1 ⋯f

sℓ

ℓ . (1.2.7)

Sabbah [Sab87] proved that B(f1,...,fℓ)
is non-trivial and moreover that the irreducible com-

ponents of V (B(f1,...,fℓ)
) of codimension one are affine-linear hyperplanes defined by poly-

nomials with nonnegative rational coefficients. This is analogous to the fact that the zeroes
of the Bernstein–Sato polynomial are negative rational numbers. A generalization of the
Bernstein–Sato ideal to any integer shift will be discussed in Section 3.2.
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Chapter 2

Integrable systems and algebraic curves

The Korteweg-de Vries (KdV) equation is the nonlinear partial differential equation

4pt − 6ppx − pxxx = 0,

providing a mathematical model for wave propagation in one dimension, such as beach waves
moving parallel to the coastline or waves in a narrow canal.
In 1973, Kadomtsev and Petviashvili [KP70] proposed a (2+ 1)-dimensional dispersive wave
equation to investigate the stability of KdV equation solutions under the impact of weak
transversal perturbations. This equation is known as the Kadomtsev–Petviashvili (KP) equa-
tion and is given by

∂x(4pt − 6ppx − pxxx) = 3pyy, (2.0.1)

where ∂x denotes the usual partial derivative with respect to the variable x. The solution
function p = p(x, y, t) represents the amplitude of a shallow water wave at the point (x, y)
in the xy-plane for fixed time t. The KP equation can be interpreted as a 2-dimensional
generalization of the KdV equation, and it turns out to have a much richer structure than
the KdV. Furthermore, it belongs to the most fundamental integrable system in the sense
that many known integrable systems can be derived as special reductions of the KP hierarchy
[AC91]. The KP equation has been recognized to be related to various areas of mathematics
and physics, such as algebraic and enumerative geometry, combinatorics, quantum field
theory, representation theory, and random matrix theory [Kod04, KS13, Wit88, ACvM12].
In this thesis, we are interested in the interplay between algebraic geometry and integrable
systems, connecting the study of complex algebraic curves to the KP equation. There is a
substantial body of literature on this topic: see for example [AG18, AÇS21, Dub81, KX21,
Kri77, Nak18, Nak19].

A fundamental contribution to building the connection to algebraic geometry is due to
Krichever, [Kri77] who provided an algebro-geometric procedure to construct KP solutions
starting from a smooth point on a genus g complex algebraic curve. Given a smooth complex
algebraic curve, we write B for its Riemann matrix. One considers the associated Riemann
theta function

θ = θ(z ∣B) = ∑
c∈Zg

exp [1
2

cTBc + cT z] . (2.0.2)

This formulation of the Riemann theta function differs slightly from the one presented (1.1.2)
because we use the Riemann matrix B normalized to have a negative definite real part to
emphasize the real numbers. Krichever [Kri77] constructed g-phase solutions to the KP
equation as follows. Let τ(x, y, t) be obtained from (2.0.2) by setting z = ux+vy+wt. Here,
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u = (u1, . . . , ug), v = (v1, . . . , vg), w = (w1, . . . ,wg) are coordinates on the weighted projective
space WP3g−1 that is defined by

deg(ui) = 1 , deg(vi) = 2 , deg(wi) = 3 for i = 1,2, . . . , g. (2.0.3)

We require that the trivariate tau function τ(x, y, t) satisfies Hirota’s differential equation

ττxxxx − 4τxxxτx + 3τ2
xx + 4τxτt − 4ττxt + 3ττyy − 3τ2

y = 0. (2.0.4)

Under this hypothesis, the following function satisfies (2.0.1), and we call it the KP solution:

p(x, y, t) = 2∂2
x log τ(x, y, t). (2.0.5)

The Dubrovin threefold studied in [AÇS21] comprises all points (u,v,w) in WP3g−1 for which
(2.0.4) holds. We refer to [AÇS21, §2] for a detailed explanation of Krichever’s parameteri-
zation of KP solutions.

This chapter concerns the study of the aforementioned objects when the smooth curve
is defined over a non-archimedean field K such as Q(ϵ) or the Puiseux series C{{ϵ}}. The
Riemann matrix Bϵ depends analytically on the parameter ϵ, and hence so do the tau function
and KP solution. In the limit ϵ → 0, the curve degenerates to a curve with only rational
components with at worst nodal singularities, and the theta function becomes a finite sum of
exponentials. We aim to study the behavior of the KP solution in this context and connect
it to the so-called soliton solutions.

This chapter is organized as follows. In Subsection 2.1 we review the derivation of
tropical Riemann matrices. Theorem 2.1.2 characterizes degenerations of theta functions
from algebraic curves over K. Proposition 2.1.3 shows that C is the vertex set of a Delaunay
polytope in Zg. In Subsection 2.1.1 we study the Hirota variety HC , which parameterizes
soliton solutions and lives in (K∗)m×WP3g−1. Theorem 2.1.8 characterizes the Hirota variety
of the g-simplex.

A key idea in this chapter is to never compute a Riemann matrix or the theta func-
tion (2.0.2). Instead we follow the approach in [KX21, Nak18, Nak19] that rests on the Sato
Grassmannian (Theorem 2.1.11). This setting is entirely algebraic and hence amenable to
symbolic computation over K. Subsection 2.1.2 explains the computation of tau functions
from points on the Sato Grassmannian.

In Subsection 2.1.3 we start from an algebraic curve X over K. Certain Riemann-Roch
spaces on X are encoded as points on the Sato Grassmannian. Following [Nak19], we present
an algorithm and its Maple implementation for computing these points and the resulting tau
functions, for X hyperelliptic. Proposition 2.1.20 addresses the case when X is reducible.
This is followed up in Subection 2.1.4, where we present Algorithm 2.1.24 for attaining KP
solitons from nodal rational curves.

Section 2.2 focuses on X being an irreducible rational nodal curve of genus g. In this
case, the Riemann theta function, in the limit ϵ→ 0, is supported on the g-dimensional cube
C = {0,1}g. We study in detail the Hirota variety HC associated to X. Of particular interest
is the irreducible subvariety defined as the image of a parameterization map, we call this
the main component. Proving that this is an irreducible component of the Hirota variety
corresponds to solving a classical problem in algebraic geometry, namely the weak Schottky
problem for rational nodal curves. Theorem 2.2.3 solves this problem up to genus nine using
computational tools. Finally, Subsection 2.2.3 studies the equations of the main component
of the variety HC and how this relates to the combinatorics of the cube. We conclude the
section with a more explicit discussion on the Schottky problem for irreducible rational nodal
curves. Finally, in Section 2.3, we propose some open problems and conjectures.
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Soliton solutions
One of the main breakthroughs in KP theory was given by Sato [Sat81], who realized that

solutions of the KP equation could be written in terms of points of an infinite-dimensional
Grassmannian. Multiline soliton solutions are a special class of KP solutions that may be
characterized with a finite-dimensional version of Sato theory. These are solutions of type
(2.0.5) where the τ function is defined as follows. Fix positive integers k < n and a vector
of parameters κ = (κ1, κ2, . . . , κn). For each k-element index set I ∈ ([n]k

), we introduce an
unknown pI that serves as a Plücker coordinate. Then the function τ is defined as a linear
combination of exponential functions

τ(x, y, t) = ∑

I∈([n]
k
)

pI ⋅ ∏
i,j∈I
i<j

(κj − κi) ⋅ exp[x ⋅∑
i∈I

κi + y ⋅∑
i∈I

κ2
i + t ⋅∑

i∈I

κ3
i ]. (2.0.6)

The following result establishes the connection between finite Grassmannians and solitons:

Proposition 2.0.1. The function τ is a solution to Hirota’s equation (2.0.4) if and only
if the point p = (pI)I∈([n]

k
)

lies in the Grassmannian Gr(k,n), i.e. there is a k × n matrix

A = (aij) such that, for all I ∈ ([n]k
), the coefficient pI is the k × k-minor of A with column

indices I.

Proof. This follows from [Kod17, Theorem 1.3]. ∎

We define a (k,n)-soliton to be any function τ(x, y, t) where κ ∈ Rn and p ∈ Gr(k,n).
The pair (κ,A) is often referred to as soliton data.

Furthermore, Kodama and Williams [KW14] enlarged the interdisciplinarity of KP theory
to combinatorics by building a surprising connection between positive finite-dimensional
Grassmannians and the structure of real regular soliton solutions.

In this chapter, our aim is to compute the KP solutions associated to algebraic curves ad-
mitting at worst nodal singularities to recover KP solitons explicitly using computer algebra.
The underlying idea is to study the behavior of the curve and the corresponding Riemann
theta function. Theorem 2.1.2 proves that, in the limit, the Riemann theta function reduces
to a finite sum

θC(z) = a1 exp[cT
1 z ] + a2 exp[cT

2 z ] + ⋯ + am exp[cT
mz ], (2.0.7)

where C = {c1,c2, . . . ,cm} is a certain subset of the integer lattice Zg. Each lattice point
ci = (ci1, . . . , cig) specifies a linear form cT

i z = ∑g
j=1 cijzj , just like in (2.0.2). The coefficients

a = (a1, a2, . . . , am) are unknowns that serve as coordinates on the algebraic torus (K∗)m.
We refer to (2.0.7) as the degenerate theta function.

2.1. Nodal curves
We work over a field K of characteristic zero with a non-archimedean valuation. Let

X be a Mumford curve of genus g, that is, X is a smooth curve over K whose Berkovich
analytification is a graph with g cycles, see [Bra20]. This metric graph is the tropicalization
Trop(X) of a faithful embedding of X. In spite of the recent advances in [Jel20], computing
Trop(X) from X remains a nontrivial task, with no known algorithm. All our examples were
derived with the methods in [Bra20, Chapter 4].
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If the curve X is hyperelliptic, given by an equation y2 = f(x), then Trop(X) is a metric
graph with a harmonic two-to-one map onto the phylogenetic tree encoding the roots of f(x).
The combinatorics of harmonic maps is subtle. We refer to [BBC17, Definition 2.2] for a
detailed explanation.

Example 2.1.1 (g = 2). Consider a genus two curve y2 = fi(x) where fi(x) is a polynomial
of degree six with coefficients in Q(ϵ). Two instances are given by the polynomials:

f1(x) = (x − 1)(x − 2ϵ)(x − 3ϵ2)(x − 4ϵ3)(x − 5ϵ4)(x − 6ϵ5),
f2(x) = (x − 1)(x − 1 − ϵ)(x − 2)(x − 2 − ϵ)(x − 3)(x − 3 − ϵ). (2.1.1)

Note that f2 is an example of a degeneration as in [Nak19, §7]. The six roots determine a
subtree with six leaves in the Berkovich line. The edge lengths are invariants of the semistable
model [Bra20] over the valuation ring of K. There are two combinatorial types of trivalent
trees with six leaves, the caterpillar and the snowflake. These are realized by the polynomials
in (2.1.1):

1 1 1
1

1
1

Figure 2.1. The metric trees for the polynomials f1 (left) and f2 (right) in (2.1.1)

Each trivalent metric tree with 2g + 2 leaves has a unique hyperelliptic covering by a
metric graph of genus g. This is the content of [BBC17, Lemma 2.4]. The edge lengths of
the genus g graph are obtained from those of the tree by stretching or shrinking with a factor
of 2. Figure 2.2 shows the graphs that give a two-to-one map to the trees in Figure 2.1.

2 21
2 2

2

2

Figure 2.2. The metric graphs Trop(X) for the curves X in (2.1.1) and Figure 2.1.

For any fixed ϵ ∈ C∗, we can compute the Dubrovin threefold in WP5, using [AÇS21,
Theorem 3.7], and derive KP solutions from its points. The difficulty is to maintain ϵ as
a parameter and to understand what happens for ϵ → 0. The use of the tropical Riemann
matrix together with the degeneration techniques we introduce in what follows provide an
alternative method to deal with the parameter ϵ.

From the tropical curve Trop(X) we can read off the tropical Riemann matrix Q. This
is a positive definite real symmetric g × g matrix. Fix a basis of cycles in Trop(X) and write
them as the g rows of a matrix Λ whose columns are labeled by the edges. Let ∆ be the
diagonal matrix whose entries are the edge lengths of Trop(X). Then we have Q = Λ∆ΛT .

The genus two graphs in Figure 2.2 have three edges. Their Riemann matrices are

Q1 =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0
0 1

2 0
0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 0
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

2 0
0 2

⎤
⎥
⎥
⎥
⎥
⎦

and Q2 =
⎡
⎢
⎢
⎢
⎢
⎣

1 −1 0
0 1 −1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0
0 2 0
0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
−1 1
0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

4 −2
−2 4

⎤
⎥
⎥
⎥
⎥
⎦

.
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We now consider the degeneration of our curve X over K = C{{ϵ}} to its tropical limit.
The Riemann matrix can be written in the form Bϵ = −

1
ϵQ +Rϵ, where Rϵ is a symmetric

g × g matrix whose entries are complex analytic functions in ϵ that converge as ϵ→ 0.
Fix a point a ∈ Rg. Replacing z by z + 1

ϵQa in the Riemann theta function (2.0.2), we
obtain

θ (z + 1
ϵ
Qa ∣Bϵ) = ∑

c∈Zg

exp [− 1
2ϵ

cTQc + 1
ϵ

cTQa] ⋅ exp [1
2

cTRϵc + cT z] . (2.1.2)

This expression converges for ϵ→ 0 provided cTQc − 2cTQa ≥ 0 for all c ∈ Zg. Equivalently,

aTQa ≤ (a − c)TQ(a − c) for all c ∈ Zg. (2.1.3)

This means that the distance from a to the origin, in the metric given by Q, is at most the
distance to any other lattice point c ∈ Zg. In other words, (2.1.3) means that a belongs to
the Voronoi cell for Q. Under this hypothesis, we now consider the associated Delaunay set

Da,Q = {c ∈ Zg
∶ aTQa = (a − c)TQ(a − c)}. (2.1.4)

This is the set of vertices of a polytope in the Delaunay subdivision of Zg induced by Q. If
a is a vertex of the Voronoi cell then the Delaunay polytope conv(Da,Q) is g-dimensional.
Figure 2.3 shows an example of a Delaunay polytope and the corresponding Voronoi cells
for g = 3.

Figure 2.3. The Delaunay polytope in the figure is given by the green tetrahedron.
The four coloured permutohedra need to be thought as glued together, they are
Voronoi cells with the tetrahedron as corresponding Delaunay set. The polytopes were
computed using Maple [MGH+12] and the figures were created using polymake [GJ20].

As in [AÇSS21, §4], we observe that exp [− 1
2ϵcTQc + 1

ϵ cTQa] converges to 1 for c ∈ Da,Q

and to 0 for c ∈ Zg/Da,Q. We have thus derived the following generalization of [AÇSS21,
Theorem 4]:

Theorem 2.1.2. Fix a in the Voronoi cell of the tropical Riemann matrix Q. For ϵ→ 0, the
series (2.1.2) converges to a theta function (2.0.7) supported on the Delaunay set C = Da,Q,
namely

θC(z) = ∑
c∈C

ac exp[cT z] , where ac = exp [1
2

cTR0c] . (2.1.5)

The Delaunay polytope conv(C) can have any dimension between 0 and g, depending
on the location of a in the Voronoi cell (2.1.3). If a lies in the interior then C = {0} is just
the origin. We are most interested in the case when a is a vertex of the Voronoi cell, and
we now assume this to be the case. This ensures that C is the vertex set of a g-dimensional



30 Integrable systems and algebraic curves

Delaunay polytope. For fixed g, there is only a finite list of Delaunay polytopes, up to lattice
isomorphism. Thanks to [Dut04] and its references, that list is known for g ≤ 6. However, not
every Delaunay polytope arises from a curve X and its tropical Riemann matrix Q = Λ∆ΛT .
To illustrate these points, we present the list of all relevant Delaunay polytopes for g ≤ 4.

Proposition 2.1.3. The complete list of Delaunay polytopes C arising from metric graphs
for g ≤ 4 is as follows. For g = 2 there are two types: triangle and square. For g = 3 there
are five types: tetrahedron, square-based pyramid, octahedron, triangular prism and cube.
For g = 4 there are 17 types. These C have between 5 and 16 vertices. They are listed in
Table 2.1.

Proof. For any edge e of the graph, let λe ∈ Zg be the associated column of Λ. The Voronoi
cell is a zonotope, obtained by summing line segments parallel to λe for all e. It has a as a
vertex. After reorienting edges, in the corresponding expression of a as a linear combination
of the vectors λe, all coefficients are positive. This means that the Delaunay polytope equals

conv(C) = {c ∈ Rg
∶ 0 ≤ λT

e c ≤ 1 for all edges e}. (2.1.6)

Our task is to classify the polytopes (2.1.6) for all graphs of genus g and all their orientations.
For g = 2 this is easy, and for g = 3 it was done in [AÇSS21, Theorem 4]. We see from
[AÇSS21, Figure 2] that every Delaunay polytope can be realized by a curve over K. For
g = 4 we started from the classification of 19 Delaunay polytopes in [ER87, Theorem 6.2],
labeled 1,2, . . . ,16 in [ER87, Table V] and labeled A,B,C in [ER87, Table VI]. Two types do
not arise from graphs, namely the pyramid over the octahedron (#B) and the cross polytope
(#C). The other 17 Delaunay polytopes all arise from graphs. They are listed in Table 2.1.
The second row gives the number of vertices. The third row gives the number of facets.
These two numbers uniquely identify the isomorphism type of C. The last row indicates
which graphs give rise to that Delaunay polytope. We refer to the 16 graphs of genus 4 by
the labeling used in [CKS19, Table 1]. Table 2.1 was constructed by a direct computation.
It establishes the g = 4 case in Proposition 2.1.3. ∎

polytopes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A
vertices 5 6 7 7 8 8 8 9 9 9 10 10 10 12 12 16 6
facets 5 6 6 8 7 9 6 7 9 6 7 12 10 7 10 8 9
graphs 1,2,3,4

5,7,10,13
1,3,4
5,6,9 3,7,10 4 7 5 8,11,15 6 10 12 11 9 13 12 15 16 2

Table 2.1. The 17 Delaunay polytopes that arise from the 16 graphs of genus 4.
Polytopes are labeled as in [ER87, Tables V and VI] and graphs are labeled as in [CKS19,
Table 1]. For instance, the complete bipartite graph K3,3 is #2, and it has two Delaunay
polytopes, namely the simplex (#1) and the cyclic 4-polytope with 6 vertices (#A). The
polytope #3 has 7 vertices and 6 facets. It is the pyramid over the triangular prism, and
it arises from three graphs (#3,7,10).

2.1.1. Hirota varieties
As aforementioned, the solutions to the KP equation arising from a fixed complex alge-

braic curve of genus g are parametrized by a threefold in a weighted projective space WP3g−1,
which was named after Boris Dubrovin by Agostini, Çelik, and Sturmfels in [AÇS21]. Fur-
thermore, using current methods from nonlinear algebra, they also study parameterizations
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and defining ideals of Dubrovin threefolds. In this subsection we introduce the Hirota va-
riety as the analogue to the Dubrovin threefold [AÇS21] for the degenerate Riemann theta
function (2.0.7) of a nodal curve.

Starting from the configuration C and its theta function in (2.0.7), we consider the tau
function

τ(x, y, t) = θC(ux + vy +wt) =
m

∑
i=1
ai exp[(

g

∑
j=1

cijuj)x + (
g

∑
j=1

cijvj) y + (
g

∑
j=1

cijwj) t].

The Hirota variety HC consists of all points (a, (u,v,w)) in the parameter space (K∗)m ×
WP3g−1 for which τ(x, y, t) satisfies Hirota’s differential equation (2.0.4). Here, the grading
for the weighted projective space WP3g−1 is the same as in (2.0.3).

We recall from [Kod17, equation (2.25)] that (2.0.4) can be written via the Hirota differen-
tial operators as P (Dx,Dy,Dt)τ ●τ = 0, for the special polynomial P (x, y, t) = x4−4xt+3y2.
For any fixed index j, the equation P (uj , vj ,wj) = 0 defines a curve in the weighted pro-
jective plane WP2. More generally, for any two indices k, ℓ in {1, . . . ,m}, we consider the
hypersurface in WP3g−1 defined by

Pkℓ(u,v,w) ∶= P ( (ck − cℓ) ⋅ u, (ck − cℓ) ⋅ v, (ck − cℓ) ⋅w).

This expression is unchanged if we switch k and ℓ. The defining equations of the Hirota
varietyHC can be obtained from the following lemma, which is proved by direct computation.

Lemma 2.1.4. The result of applying the differential operator (2.0.4) to the function τ(x, y, t)
equals

∑
1≤k<ℓ≤m

akaℓ Pkℓ(u,v,w) exp[ ((ck+cℓ) ⋅ u)x + ((ck+cℓ) ⋅ v) y + ((ck+cℓ) ⋅w) t ]. (2.1.7)

The polynomials defining the Hirota variety of C are the coefficients we obtain by writing
(2.1.7) as linear combination of distinct exponentials. These correspond to points in the set

C
[2]
= {ck + cℓ ∶ 1 ≤ k < ℓ ≤m} ⊂ Zg. (2.1.8)

A point d in C[2] is uniquely attained if there exists precisely one index pair (k, ℓ) such that
ck +cℓ = d. In that case, (k, ℓ) is a unique pair, and this contributes the quartic Pkℓ(u,v,w)
to our defining equations. If d ∈ C[2] is not uniquely attained, then we seek the polynomial

∑
1≤k<ℓ≤m
ck+cℓ =d

Pkℓ(u,v,w)akaℓ. (2.1.9)

Corollary 2.1.5. The Hirota variety HC is defined by the quartics Pkℓ for all unique pairs
(k, ℓ) and by the polynomials (2.2.19) for all non-uniquely attained points d ∈ C[2]. If all
points in C[2] are uniquely attained then HC is defined by the (m2 ) quartics Pkℓ(u,v,w), so
its equations do not involve the coefficients a1, . . . , am. This is the case when C is the vertex
set of a simplex.

Proof. To obtain the defining equation of the Hirota variety we ask for the vanishing of the
polynomials in the ring C[a,u,v,w] which provide coefficients for the exponentials appearing
in (2.1.7). Notice that such exponential terms depend exclusively on the sums ck+cℓ. Denote
ei the i-th unitary vector in Zg. When C = {0, e1, . . . , eg}, the set C[2] = {ei, ei+j , ∶ i, j ∈
[g], i < j}, where ei is uniquely attained as ei+0 and ei+j , can only be attained as ei+ej . ∎
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Example 2.1.6 (The Square). The configuration in Z2 that arises from the polynomial f1
in (2.1.1), where the genus g = 2, is the square C = {(0,0), (1,0), (0,1), (1,1)}. Here,

C
[2]
= {(0,1), (1,0), (1,1), (1,2), (2,1)}.

The Hirota variety HC is a complete intersection of codimension three in (K∗)4×WP5. There
are four unique pairs (k, ℓ) and these contribute the two quartics P13 = P24 = u

4
1−4u1w1+3v2

1
and P12 = P34 = u

4
2 − 4u2w2 + 3v2

2. The point d = (1,1) is not uniquely attained in C[2]. The
polynomial (2.2.19) contributed by this d equals

P (u1 + u2, v1 + v2,w1 +w2)a00a11 + P (u1 − u2, v1 − v2,w1 −w2)a01a10. (2.1.10)

For any point in HC , we can write τ(x, y, t) as a (2,4)-soliton, as shown in [Kod17, § 2.5].
Therefore, in order for the associated theta function θC = a00 + a10 exp[z1] + a01 exp[z2] +
a11 exp[z1+z2] to yield a KP solution, the following three polynomial identities are necessary
and sufficient:

u4
1 − 4u1w1 + 3v2

1 = 0, ((u1+u2)
4 − 4(u1+u2)(w1+w2) + 3(v1+v2)

2)a00a11
u4

2 − 4u2w2 + 3v2
2 = 0, + ((u1−u2)

4 − 4(u1−u2)(w1−w2) + 3(v1−v2)
2)a01a10 = 0.

If these conditions hold then p(x, y, t) can be written as a (2,4)-soliton by [Kod17, §2.5].

We now consider the simplex C = {0, e1, . . . , eg}. This arises from plane quartics (g = 3)
that degenerate to four lines or to a conic plus two lines [AÇSS21, Example 5]. For higher
genus, it is not obvious understanding the degeneration that would lead to the simplex. The
tau function is

τ(x, y, t) = a0 + a1 exp[u1x+v1y+w1t] + a2 exp[u2x+v2y+w2t] + ⋯ + ag exp[ugx+vgy+wgt].

We know from Corollary 2.1.5 that the conditions imposed by Hirota’s differential equation
(2.0.4) do not depend on a but only on u,v,w. We thus consider the Hirota variety HC in
WP3g−1.

Lemma 2.1.7. The Hirota variety HC of the simplex C is the union of two irreducible com-
ponents of dimension g in WP3g−1. One of the two components has the following parametric
representation:

uj ↦ κj − κ0 , vj ↦ κ2
j − κ

2
0 , wj ↦ κ3

j − κ
3
0 for j = 1,2, . . . , g. (2.1.11)

The other component is obtained from (2.1.11) by the sign change vj ↦ −vj for j = 1, . . . , g.

Proof. By Corollary 2.1.5, the variety HC is defined by the quartics P (ui, vi,wi) and P (ui −

uj , vi − vj ,wi − wj). The first g quartics imply uj = κj − κj+g, vj = κ
2
j − κ

2
j+g, wj = κ

3
j − κ

3
j+g

for j = 1, . . . , g. Under these substitutions, the remaining (g2) quartics factor into products
of expressions κi − κj . Analyzing all cases up to symmetry reveals the two components. ∎

Setting t = κ0 and κj = uj + t, the parameterization (2.1.11) of HC can be written as
follows:

uj ↦ uj , vj ↦ 2ujt + u
2
j , wj ↦ 3ujt

2
+ 3u2

j t + u
3
j for j = 1,2, . . . , g. (2.1.12)

Theorem 2.1.8. The prime ideal of the Hirota variety in (2.1.11) is minimally generated by

(a) the (g2) cubics viuj − vjui − uiuj(ui − uj) for 1 ≤ i < j ≤ g,
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(b) the g quartics 4wiui − 3v2
i − u

4
i for i = 1, . . . , g,

(c) the g(g − 1) quartics 4wjui − 3vivj + 3ui(ui − uj)vj − uiu
3
j for i /= j, and

(d) the (g2) quintics 4wivj − 4wjvi + 3uivj(vj − vi)+ uivj(uj − ui)(ui − 2uj)+ uiu
3
j(ui − uj).

These 2g2−g ideal generators are a minimal Gröbner basis with the underlined leading terms.

Proof. We consider the subalgebra of K[t, u1, . . . , ug] that is generated by the 3g polynomials
in the parametrization (2.1.12). We sort terms by t-degree. We claim that this is a Khovanskii
basis, or basis, as defined in [KM19] or [Stu96, Chapter 11]. The parametrization given by
the leading monomials uj ↦ uj , vj ↦ 2ujt, wj ↦ 3ujt

2 defines a toric variety, namely the
embedding of P1 × Pg−1 into P3g−1 by the very ample line bundle O(2,1). Its toric ideal is
generated by the leading binomials viuj − vjui, 4wiui − 3v2

i , 4wjui − 3vivj , wivj − wjvi seen
in (a)-(d). In fact, by [Stu96, §14.A], these 2g2 − g quadrics form a square-free Gröbner
basis with underlined leading monomials. Under the correspondence in [Stu96, Theorem
8.3], this initial ideal corresponds to a unimodular triangulation of the associated polytope
(2∆1) ×∆g−1.

One checks directly that the polynomials (a), (b), (c), (d) vanish for (2.1.12). Since only
two indices i and j appear, by symmetry, it suffices to do this check for g = 2. Hence the
generators of the toric ideal are the leading binomials of certain polynomials that vanish
on the Hirota variety. By [KM19, Theorem 2.17] or [Stu96, Corollary 11.5], this proves the
Khovanskii basis property. Geometrically speaking, we have constructed a toric degeneration
from the Hirota variety to a toric variety in WP3g−1. Furthermore, using [KM19, Proposition
5.2] or [Stu96, Corollary 11.6 (1)] we conclude that the polynomials in (a)-(d) are a Gröbner
basis for the prime ideal of (2.1.12), where the term order is chosen to select the underlined
leading terms. ∎

Using the methods described above, we can compute the Hirota variety HC for each of
the known Delaunay polytopes C, starting with those in Proposition 2.1.3. We did this above
for the triangle, the square, and the tetrahedron. Here is one more example.

Example 2.1.9 (Triangular prism). Let g = 3 and take θC to be the six-term theta function

a000 + a100 exp[z1] +a001 exp[z3] + a101 exp[z1+z3] + a011 exp[z2+z3] + a111 exp[z1+z2+z3].

The prism C arises in the degeneration as in Theorem 2.1.2 from a smooth plane quartic to
a cubic plus a line. This is the second diagram in Figures 1 and 2 in [AÇS21, page 11]. The
Hirota variety is cut out by four quartics in ui, vi,wi, one for each edge direction, plus three
relations involving the aijk, one for each of the three quadrangle facets. The edges from the
two triangle facets define a reducible variety of codimension 3. One irreducible component
is given by

⟨u4
1 + 3v2

1 − 4u1w1, u
4
2 + 3v2

2 − 4u2w2, u
2
1u2 + u1u

2
2 − u2v1 + u1v2⟩.

Together with the four other relations, this defines an irreducible variety of codimension 4
inside (K∗)6 ×WP8. That irreducible Hirota variety has the parametric representation

u1 = κ1 − κ2 , v1 = κ
2
1 − κ

2
2 , w1 = κ

3
1 − κ

3
2 ,

u2 = κ2 − κ3 , v2 = κ
2
2 − κ

2
3 , w2 = κ

3
2 − κ

3
3 ,

u3 = κ4 − κ5 , v3 = κ
2
4 − κ

2
5 , w3 = κ

3
4 − κ

3
5 ,

a000 = (κ1 − κ4)λ0 , a100 = (κ2 − κ4)λ0λ1 , a110 = (κ3 − κ4)λ0λ1λ2 ,
a001 = (κ1 − κ5)λ0λ3 , a101 = (κ2 − κ5)λ0λ1λ3 , a111 = (κ3 − κ5)λ0λ1λ2λ3 .
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This allows us to write the τ -function as a (2,5)-soliton, with A = (
1 1 1 0 0
0 0 0 1 1) . The

six bases of the matrix A correspond to the six terms in θC .

2.1.2. Sato Grassmannian
The Sato Grassmannian is a device for encoding all solutions to the KP equation. Recall

that the classical Grassmannian Gr(k,n) parameterizes k-dimensional subspaces of Kn. It
is a projective variety in P(

n
k
)−1, cut out by quadratic relations known as Plücker relations.

Following [MS21b, Chapter 5], the Plücker coordinates pI are indexed by k-element subsets
I of {1,2, . . . , n}. As is customary in Schubert calculus [MS21b, §5.3], we identify these (nk)
subsets with partitions λ that fit into a k×(n−k) rectangle. Such a partition λ is a sequence
(λ1, λ2, . . . , λk) of integers that satisfy n − k ≥ λ1 ≥ λ2 ≥ ⋯ ≥ λk ≥ 0. The corresponding
Plücker coordinate cλ = pI is the maximal minor of a k × n matrix M of unknowns, as in
[MS21b, §5.1], where the columns are indexed by I = {λk + 1, λk−1 + 2, . . . , λ2 + k−1, λ1 + k}.
With this notation, the Plücker relations for Gr(k,n) are quadrics in the unknowns cλ.

Example 2.1.10. We revisit [MS21b, Example 5.9] with Plücker coordinates indexed by
partitions. The Grassmannian Gr(3,6) is a 9-dimensional subvariety in P19. Its prime ideal is
generated by 35 Plücker quadrics. These are found easily by the following lines in Macaulay2
[GS]:

R = QQ[c,c1,c11,c111,c2,c21,c211,c22,c221,c222,c3,c31,c311,
c32,c321,c322,c33,c331,c332,c333];
I = Grassmannian(2,5,R)

The output consists of 30 three-term relations, like c211c22−c21c221+c2c222 and five four-term
relations, like c221c31−c21c321+c11c331+c c333. These quadrics form a minimal Gröbner basis.

The Sato Grassmannian SGM is the zero set of the Plücker relations in the unknowns cλ,
where we now drop the constraint that λ fits into a k × (n − k)-rectangle. Instead, we allow
arbitrary partitions λ. What follows is the description of a minimal Gröbner basis for SGM.

Partitions are order ideals in the poset N2. The set of all order ideals, ordered by inclusion,
is a distributive lattice, known as Young’s lattice. Consider any two partitions λ and µ that
are incomparable in Young’s lattice. They fit into a common k × (n − k)-rectangle, for some
k and n. There is a canonical Plücker relation for Gr(k,n) that has leading monomial cλcµ.
It is known that these straightening relations form a minimal Gröbner basis for fixed k and
n. This property persists as k and n − k increase, hence yielding a Gröbner basis for SGM.

The previous paragraph rephrases the definition in [DE18, Sat81] of the Sato Grass-
mannian as an inverse limit of projective varieties. This comes from the diagram of maps
Gr(k,n+1) ⇢ Gr(k,n) and Gr(k+1, n+1) ⇢ Gr(k,n), where these rational maps are given
by dropping the last index. This corresponds to deletion and contraction in matroid the-
ory [MS21b, Chapter 13]. One checks that the simultaneous inverse limit for k → ∞ and
n−k →∞ is well-defined. The straightening relations in our equational description above are
those in [DE18, Example 4.1]. That they form a Gröbner basis is best seen using Khovanskii
bases [KM19, Example 7.3].

We next present the parametric representation of SGM that is commonly used in KP
theory. Let V = K((z)) be the field of formal Laurent series with coefficients in our ground
field K. Consider the natural projection map π∶V → K[z−1] onto the polynomial ring in z−1.
We regard V and K[z−1] as K-vector spaces, with Laurent monomials zi serving as bases.
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Points in the Sato Grassmannian SGM correspond to K-subspaces U ⊂ V such that

dim Kerπ∣U = dim Cokerπ∣U , (2.1.13)

and this common dimension is finite. We can represent U ∈ SGM via a doubly infinite matrix
as follows. For any basis (f1, f2, f3, . . . ) of U , the jth basis vector is a Laurent series,

fj(z) =
+∞

∑
i=−∞

ξi,jz
i+1.

Then U is the column span of the infinite matrix ξ = (ξi,j) whose rows are indexed from top
to bottom by Z and whose columns are indexed from right to left by N. The ith row of ξ
corresponds to the coefficients of zi+1. Sato proved that a subspace U of V satisfies (2.1.13)
if and only if there is a basis, called a frame of U , whose corresponding matrix has the shape

ξ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⋯ 1 0 0 0 ⋯ 0
⋯ ∗ 1 0 0 ⋯ 0
⋯ ∗ ∗ ξ−ℓ,ℓ ξ−ℓ,ℓ−1 ⋯ ξ−ℓ,1
⋯ ∗ ∗ ξ−ℓ+1,ℓ ξ−ℓ+1,ℓ−1 ⋯ ξ−ℓ+1,1
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⋯ ∗ ∗ ξ−1,ℓ ξ−1,ℓ−1 ⋯ ξ−1,1
⋯ ∗ ∗ ξ0,ℓ ξ0,ℓ−1 ⋯ ξ0,1
⋯ ∗ ∗ ξ1,ℓ ξ1,ℓ−1 ⋯ ξ1,1
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.1.14)

This matrix is infinite vertically, infinite on the left and, most importantly, it is eventually
lower triangular with 1 on the diagonal, at the (−n,n) positions. The space U is described
by the positive integer ℓ and the submatrix with ℓ linearly independent columns whose upper
left entry is ξ−ℓ,ℓ. This description implies that a subspace U of V satisfies (2.1.13) if and
only if

there exists ℓ ∈ N such that dimU ∩ Vn = n + 1 for all n ≥ ℓ, (2.1.15)

where Vn = z
−nK[[z]] denotes the space of Laurent series with a pole of order at most n.

The Plücker coordinates on SGM are computed as minors ξλ of the matrix ξ. Think of a
partition λ as a weakly decreasing sequence of nonnegative integers that are eventually zero.
Setting mi = λi − i for i ∈ N, we obtain the associated Maya diagram (m1,m2,m3, . . . ). This
is a vector of strictly decreasing integers m1 >m2 > . . . such that mi = −i for large enough i.
Partitions and Maya diagrams are in natural bijection. Given any partition λ, we consider
the matrix (ξmi,j)i,j≥1 whose row indices m1,m2,m3, . . . are the entries in the Maya diagram
of λ. Thanks to the shape of the matrix ξ, it makes sense to take the determinant

ξλ ∶= det(ξmi,j). (2.1.16)

This Plücker coordinate is a scalar in K that can be computed as a maximal minor of the
finite matrix to the lower right of ξ−ℓ,ℓ in (2.1.14). We summarize our discussion as a theorem.

Theorem 2.1.11. The Sato Grassmannian SGM is the inverse limit of the classical Grass-
mannians Gr(k,n) ⊂ P(

n
k
)−1 as both k and n−k tend to infinity. A parameterization of SGM

is given by the matrix minors cλ = ξλ in (2.1.16), where λ runs over all partitions. The
equations of SGM are the quadratic Plücker relations, shown in [DE18, Example 4.1] and in
Example 2.1.10.
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We now connect the Grassmannians above to our study of solutions to the KP equation.
Fix positive integers k < n and a vector of parameters κ = (κ1, κ2, . . . , κn). Our ansatz for
solving (2.0.4) is now the τ function (2.0.6). Notice that even the case k = 1 is interesting.
Writing A = (a1 a2 ⋯ an), the (1, n)-soliton equals

τ(x, y, t) =
n

∑
i=1
ai exp[x ⋅ κi + y ⋅ κ

2
i + t ⋅ κ

3
i ].

If we now set n = g+1 and divide the sum above by its first exponential term then we obtain
the tau function associated with the g-simplex in Lemma 2.1.7. Hence the KP solutions that
arise when the Delaunay polytope is a simplex are precisely the (1, n)-solitons.

We now connect the Sato Grassmannian and the classical finite Grassmannians to our
study of solutions to the KP equation. First, we derive the Sato representation in [Kod17,
Definition 1.3], that is, we express τ(x, y, t) as a linear combination of Schur polynomials. Let
λ be a partition with at most three parts, written λ1 ≥ λ2 ≥ λ3 ≥ 0. Following [Kod17, §1.2.2],
the associated Schur polynomial σλ(x, y, t) can be defined as follows. We first introduce the
elementary Schur polynomial σj(x, y, t) by the series exp[xλ+yλ2+ tλ3] = ∑∞j=0 σj(x, y, t)λ

j .
The Schur polynomial σλ for the partition λ = (λ1, λ2, λ3) is the determinant of the Jacobi-
Trudi matrix of size 3 × 3:

σλ(x, y, t) = det(σλi−i+j(x, y, t))1≤i,j≤3.

To be completely explicit, we list Schur polynomials for partitions λ with λ1 + λ2 + λ3 ≤ 4:
σ∅ = 1, σ1 = x, σ11 =

1
2x

2 − y, σ2 =
1
2x

2 + y, σ111 =
1
6x

3 − xy + t, σ3 =
1
6x

3 + xy + t,

σ21 =
1
3x

3 − t, σ211 =
1
8x

4 − 1
2x

2y − 1
2y

2, σ22 =
1
12x

4 − tx + y2, σ31 =
1
8x

4 + 1
2x

2y − 1
2y

2, . . .

For a partition λ as above, we set λ4 = ⋯ = λk = 0. For I = {i1 < i2 < ⋯ < ik} we set

∆λ(κi, i ∈ I) ∶= det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

κλ1+k−1
i1

κλ1+k−1
i2

⋯ κλ1+k−1
ik

κλ2+k−2
i1

κλ2+k−2
i2

⋯ κλ2+k−2
ik

⋮ ⋮ ⋱ ⋮

κλk
i1

κλk
i2

⋯ κλk
ik

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The empty partition gives the Vandermonde determinant ∆∅(κi, i ∈ I) =∏ i,j∈I
i<j
(κj − κi).

Lemma 2.1.12. The exponential function indexed by I in the formula (2.0.6) has the ex-
pansion

exp[x ⋅∑
i∈I

κi + y ⋅∑
i∈I

κ2
i + t ⋅∑

i∈I

κ3
i ] = ∆∅(κi, i ∈ I)

−1
⋅ ∑

λ1≥λ2≥λ3≥0
∆λ(κi, i ∈ I) ⋅ σλ(x, y, t).

Proof. The unknowns x, y, t play the role of power sum symmetric functions in r1, r2, . . .:

x = r1 + r2 + r3 = p1(r), y =
1
2
(r2

1 + r
2
2 + r

2
3) =

1
2
p2(r), t =

1
3
(r3

1 + r
3
2 + r

3
3) =

1
3
p3(r).

It suffices to prove the statement after this substitution since the ring of power series is
graded according to the weights degx = 1,deg y = 2, and deg t = 3, and the substitution
above preserves the grading. By [Kod17, Remark 1.5], we have σλ(x, y, t) = sλ(r1, r2, r3),
where sλ is the usual Schur function as a symmetric polynomial, which satisfies ∆λ(κi, i ∈
I) = sλ(κi, i ∈ I) ⋅∆∅(κi, i ∈ I). Our identity can be rewritten as

exp [p1(w) ⋅ p1(κ) +
1
2
p2(w) ⋅ p2(κ) +

1
3
p3(w) ⋅ p3(κ)] = ∑

λ1≥λ2≥λ3≥0
sλ(κi, i ∈ I) ⋅ sλ(r1, r2, r3).

This is precisely the classical Cauchy identity, as stated in [Sta01, page 386]. ∎
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By substituting the formula in Lemma 2.1.12 into the right hand side of (2.0.6), we obtain
the following:

Proposition 2.1.13. The (k,n)-soliton has the following expansion into Schur polynomials

τ(x, y, t) = ∑
λ1≥λ2≥λ3≥0

cλ ⋅ σλ(x, y, t) , where cλ = ∑

I∈([n]
k
)

pI ⋅∆λ(κi, i ∈ I). (2.1.17)

For any point ξ in the Sato Grassmannian SGM we now define a tau function as follows:

τξ(x, y, t) = ∑
λ

ξλ σλ(x, y, t). (2.1.18)

The sum is over all possible partitions. We can now state the main result of Sato’s theory.

Theorem 2.1.14 (Sato). For any ξ ∈ SGM, the tau function τξ satisfies Hirota’s bilinear
form (2.0.4).

Actually, Sato’s theorem is much more general. From a frame ξ as in (2.1.14), we can
define

τ(t1, t2, t3, t4, . . . ) = ∑
λ

ξλ σλ(t1, t2, t3, t4, . . . ).

The sum is over all partitions. This function in infinitely many variables is a solution
to the KP hierarchy. Moreover, every solution to the KP hierarchy arises from the Sato
Grassmannian in this way. The tau functions that we consider here arise from the general
case by setting

t1 = x, t2 = y, t3 = t, t4 = t5 = ⋅ ⋅ ⋅ = 0.
We refer to [Kod17, Theorem 1.3] for a first introduction and numerous references. We may
also start with an ansatz τ(x, y, t) = ∑λ cλ σλ(x, y, t), and examine the quadratic equations
in the unknowns cλ that are imposed by (2.0.4). This leads to polynomials that vanish on
the Sato Grassmannian.

Remark 2.1.15. We can view Proposition 2.0.1 as a special case of Theorem 2.1.14, given
that the Sato Grassmannian contains all classical Grassmannians Gr(k,n). Here is an explicit
description. We fix distinct scalars κ1, . . . , κn in K∗. Points in Gr(k,n) are represented by
matrices A in Kk×n. Following [KX21, §3.1] and [Nak19, §2.2], we turn A into an infinite
matrix ξ as in (2.1.14). Let Λ(κ) denote the ∞× n matrix whose rows are (κℓ

1, κ
ℓ
2, . . . , κ

ℓ
n)

for ℓ = 0,1,2, . . .. We define A(κ) ∶= Λ(κ) ⋅AT . This is the ∞× k matrix whose jth column
is given by the coefficients of

n

∑
i=1

aji

1 − κiz
=
∞

∑
ℓ=0

n

∑
i=1
κℓ

i aji ⋅ z
ℓ.

This verifies [Nak19, Theorem 3.2]. Indeed, the double infinite matrix representing τ equals

ξ = [
1 0
0 A(κ)

] ,

where 0 and 1 are infinite zero and identity matrices. In particular, the first nonzero row of
A(κ) is at the row −k of ξ. The corresponding basis (f1, f2, f3, . . . ) of the space U is given by

fj =
1

zk−1

n

∑
i=1

aji

1 − κiz
, for j = 1, . . . , k, fj =

1
zj−1 , for j ≥ k + 1. (2.1.19)

The Plücker coordinates cλ indexed by partitions with at most three parts are certain minors
of A(κ), and these are expressed in terms of maximal minors of A by the formula in (2.1.17).
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2.1.3. Tau functions from algebraic curves
Let X be a smooth projective curve of genus g defined over a field K of characteristic

zero. In this subsection we show how certain Riemann-Roch spaces on X define points in
the Sato Grassmannian SGM. Using Theorem 2.1.14, we obtain KP solutions by choosing
appropriate bases of these spaces. The relevant theory is known since the 1980s; see [Kod17,
KX21, Sat81]. We begin with the exposition in [Nak19, §4]. Our aim is to develop tools to
carry this out in practice.

Fix a divisor D of degree g − 1 on X and a distinguished point p ∈ X, both defined over
K. For any integer n ∈ N, we consider the Riemann-Roch space H0(X,D + np). For m < n
there is an inclusion H0(X,D +mp) ⊆ H0(X,D + np). As n increases, we obtain a space
H0(X,D+∞p) of rational functions on the curve X whose pole order at p is unconstrained.

Let z denote a local coordinate on X at p. Each element in H0(X,D+∞p) has a unique
Laurent series expansion in z and hence determines an element in V = K((z)). Let m =
ordp(D) be the multiplicity of p in D. Multiplication by zm+1 defines the K-linear map:

ι ∶ H0
(X,D +∞p) → V, s = ∑

n∈Z
snz

n
↦ ∑

n∈Z
snz

n+m+1.

Proposition 2.1.16. The space U = ι(H0(X,D +∞p)) ⊂ V lies in SGM.

Proof. The map ι is injective because a rational function on an irreducible curveX is uniquely
determined by its Laurent series. Setting Vn = z

−nK[[z]] ⊂ V as in Subsection 2.1.2, we have

dimU ∩ Vn = h
0
(X,D + (n + 1)p) = n + 1 + h1

(X,D + (n + 1)p). (2.1.20)

The second equality is the Riemann-Roch Theorem, with deg(D) = g−1. Hence (2.1.15) holds
provided h1(X,D + (n + 1)p) = 0. This happens for n ≥ g − 1, by degree considerations. ∎

Following [Nak19], we examine the case g = 2. A smooth genus two curve is hyperelliptic:

X = {y2
= (x − λ1)(x − λ2)⋯(x − λ6)} .

Here λ1, λ2, . . . , λ6 ∈ K are pairwise distinct. Let p be one of the two preimages of the point
at infinity under the double cover X → P1. Using the local coordinate z = 1

x at p, we write

y = ±
√
(x − λ1)⋯(x − λ6) = ±

1
z3 ⋅

+∞

∑
n=0

αnz
n,

where α0 = 1 and the αi are polynomials in λ1, . . . , λ6. We consider three kinds of divisors:

D0 = p, D1 = p1, and D2 = p1 + p2 − p,

where p1 = (c1, y1), p2 = (c2, y2) are general points on X. For m ≥ 3, consider the functions

gm(x) = ∑
m
j=0 αjx

m−j ,

fm(x, y) =
1
2 (x

m−3y + gm(x)) ,

hj(x, y) =
f3(x,y)−f3(cj ,−yj)

x−cj
=

y+g3(x)−(−yj+g3(cj))

2(x−cj)
for j = 1,2.

These rational functions are series in z with coefficients that are polynomials in λ1, . . . , λ6.
We write Ui for the image of the Riemann-Roch space H0(X,Di+∞p) under the inclusion ι.
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Lemma 2.1.17 ([Nak19, Lemma 5.2]). The set {1, f3, f4, f5, . . .} is a basis of U0, the set
{1, f3, f4, f5, . . .} ∪ {h1} is a basis of U1, and {1, f3, f4, f5, . . .} ∪ {h1, h2} is a basis of U2.

This lemma furnishes us with an explicit basis for the K-vector space U in Proposi-
tion 2.1.16. This basis is a frame in the sense of Sato theory. It gives us the matrix ξ
in (2.1.14), from which we compute the Plücker coordinates (2.1.16) and the tau function
(2.1.18). This process is a symbolic computation over the ground field K. No numerics are
needed. For general curves of genus g ≥ 3, the same is possible, but it requires computing a
basis for U , e.g. using the concrete methods such as [Hes02, Algorithm 6.1 and 8.8].

Our approach differs greatly from the computation of KP solutions from the curve X
via theta functions as in [AÇS21, Dub81, Kri77]. That would require the computation of
the Riemann matrix of X, which cannot be done over K. This is why we adopted the SGM
approach in [KX21, Nak19].

We implemented the method described above in Maple for D0 = p on hyperelliptic curves
over K = Q(ϵ). The code is available at the link

https://mathrepo.mis.mpg.de/KPSolitonsFromTropicalLimits.

If λ is a partition with n parts, then the Plücker coordinate ξλ is the minor given by the
n right-most columns of ξ and the rows given by the first n parts in the Maya diagram of
λ. Since the tau function (2.1.18) is an infinite sum over all partitions, our code does not
provide an exact solution to the Hirota equation (2.0.4). Instead, it computes the truncated
tau function

τ[n] ∶=
n

∑
i=1
∑
λ⊢i

ξλ σλ(x, y, t), (2.1.21)

where n is the order of precision. In our experiments we evaluated (2.1.21) up to n = 12
on a range of hyperelliptic curves of genus g = 2,3,4. The first non-zero τ[n] is τ[ g ] =
σ(g)(x, y, t) [Nak19, Proposition 6.3]. When plugging (2.1.21) into the left hand side of
(2.0.4), we get an expression in x, y, t whose terms of low order vanish. The following facts
were observed for this expression. For n > g + 2, the term of lowest degree has degree
n + g − 3, and the monomial that appears in that lowest degree n + g − 3 = 1,2,3, . . . is
x, y, t, xt, yt, t2, xt2, yt2, t3, xt3, yt3, t4, . . . .

We use our Maple code to study (k,n)-solitons arising from the degenerations in [Nak19].
Namely, we explore the limit for ϵ→ 0 for hyperelliptic curves of genus g = n − 1 given by

y2
= (x − κ1)(x − κ1 − ϵ) ⋅ ⋯ ⋅ (x − κn)(x − κn − ϵ). (2.1.22)

Set h(z) = (1 − κ1z)⋯(1 − κnz). For ϵ→ 0 the frame found in Lemma 2.1.17 degenerates to

U = {1, z−nh(z), z−(n+1)h(z), z−(n+2)h(z), z−(n+3)h(z), . . .}. (2.1.23)

Observe that z−nh(z) gets expanded to

z−n
+ z−(n−1)

(−
n

∑
i=1
κi) + z

−(n−2)
( ∑

1≤i≤j≤n
κiκj) + z

−(n−3)
( ∑

1≤i≤j≤l≤n
κiκjκl) +O(z

−(n−4)
).

Following [Nak19, §7], one multiplies all elements in U by h(z)−1 in order to obtain a soliton
solution. By [Nak19, Theorem 3.2], we obtain a (1, n)-soliton solution given by the matrix

A = ((∏
i≠1
(κ1 − κi))

−1
(∏

i≠2
(κ2 − κi))

−1
⋯ (∏

i≠n

(κn − κi))
−1
) .

https://mathrepo.mis.mpg.de/KPSolitonsFromTropicalLimits
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Example 2.1.18. The soliton that arises from the genus 2 curve given by the polynomial
f2(x) in (2.1.1) is a (1,3)-soliton given by the matrix A = ( 1

2 − 1 1
2 ) and parameters

κ = (1,2,3).

We computed the tau function for a range of curves over K = Q(ϵ). Their limit as ϵ → 0
is not the same as the tau functions obtained from the combinatorial methods in Section 2.1:

Example 2.1.19. Let X be the hyperelliptic curve of genus 3 given by y2 = f(x) where
f(x) is given by

(x+1+ϵ)(x+1+2ϵ)(x+1+ϵ+ϵ2)(x+1+2ϵ+ϵ2)(x+2+ϵ)(x+2+2ϵ)(x+2+ϵ+ϵ2)(x+2+2ϵ+ϵ2).

In Figure 2.4 we exihibit the subtree with 8 leaves that arises from the 8 roots of f(x) and
the corresponding metric graph of genus 3 which maps to it under the hyperelliptic covering.

2
1

1

1

1 1 11 1

1
2

1
2

Figure 2.4. The metric tree (left) and the metric graph (right) for the curve X

For a suitable cycle basis, the tropical Riemann matrix equals Q =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 0
−1 3 −1
0 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. This

appears in the second row in [AÇSS21, Table 4]: the Voronoi polytope is the hexarhombic
dodecahedron. This corresponds to the tropical degeneration from a smooth quartic to a
conic and two lines in P2. According to [AÇSS21, Theorem 4] there are two types of Delaunay
polytopes in this case, namely the tetrahedron (4 vertices) and the pyramid (5 vertices). The
theta function (2.0.7) for the tetrahedron equals θC(z) = a000 + a100 exp[z1]+ a010 exp[z2]+
a001 exp[z3]. The Hirota variety lives in (K∗)4 ×WP8, and it is characterized by Theorem
2.1.8. Each point on the Hirota variety gives a KP solution. The theta function for the
pyramid equals

θC′(z) = a000 + a100 exp[z1] + a001 exp[z3] + a101 exp[z1 + z3] + a111 exp[z1 + z2 + z3].

The Hirota variety HC′ ⊂ (K∗)5 ×WP8 is cut out by eight quadrics Pij as in Section 2.1.1,
plus

P (u1 + u3, v1 + v3,w1 +w3)a000a101 + P (u1, v1,w1)a001a101.

The resulting tau functions differ from those obtained by setting ϵ = 0 in our Maple output.
This happens because y2 = f(x) is not a semistable model. The special fiber of that curve at
ϵ = 0 does not have ordinary singularities: it has two singular points of the form y2 = x4. On
the other hand, if the curve at ϵ = 0 is rational and has nodal singularities, as in (2.1.22), then
we get soliton solutions at the limit. We shall see this more precisely in the next subsection.

After this combinatorial interlude, we now return to Proposition 2.1.16, and explore this
for a singular curve X. Suppose X is connected, has arithmetic genus g, and all singularities
are nodal. We recall briefly how to compute H0(X,E) when E is a divisor supported in the
smooth locus of X. If X is irreducible, then we consider the normalization X̃ → X, that
separates the nodes of X. The divisor E lifts to X̃, and H0(X,E) is a subspace of H0(X̃,E).
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It consists of rational functions which coincide on the points of X̃ that map to the nodes of
X. If X = X0 ∪ ⋅ ⋅ ⋅ ∪Xr is reducible, then H0(X,E) is a subspace of ⊕r

i=0H
0(Xi,E∣Xi

). Its
elements are tuples (f0, f1, . . . , fr) where fi and fj coincide on Xi ∩Xj .

Fix a divisor D of degree g − 1 and a point p, where all the points in support of D and p
are smooth on X and defined over K. We wish to compute H0(X,D +∞p). Riemann-Roch
holds for X and hence so does (2.1.20). In order for the proof of Proposition 2.1.16 to go
through, we need two conditions:

(∗) A rational function in H0(X,D+np) is uniquely determined by its Laurent series at p.

(∗∗) We have h1(X,D + np) = 0 for n≫ 0.

Our next result characterizes when these two conditions hold. Let X0 be the irreducible
component of X that contains p, and let X ′0 =X/X0 be the curve obtained by removing X0.
Set Z =X0∩X

′
0 and denote the restrictions of the divisor D to X0,X

′
0 by D0,D

′
0 respectively.

Proposition 2.1.20. Condition (∗) holds if and only if H0(X ′0,D
′
0−Z) = 0. Condition (∗∗)

holds if and only if H1(X ′0,D
′
0) = 0. These are vanishing conditions on the curve X ′0.

Proof. If X is irreducible then (∗) holds since rational functions are determined by their series
on the normalization X̃. If X is reducible then X ′0 is nonempty. We need that the restriction

H0
(X,D + np) Ð→ H0

(X0,D0 + np)

is injective. The kernel of this map consists exactly of those rational functions in H0(X ′0,D
′
0)

which vanish on Z. In other words, the kernel is the space H0(X ′0,D
′
0 −Z), as desired.

Also for the second statement, we can takeX to be reducible. Consider the exact sequence

0 Ð→ OX(D + np) Ð→ OX0(D0 + np)⊕OX′0
(D′0) Ð→ OZ(D0 + np) Ð→ 0.

Taking global sections we see that H1(X,D+np) surjects onto H1(X ′0,D
′
0), since dim(Z) = 0.

Hence H1(Z,D0 + np) = 0. In particular, if H1(X,D + np) = 0 then H1(X ′0,D
′
0) = 0.

Conversely, suppose H1(X ′0,D
′
0) = 0. Since X0 is irreducible, we have H1(X0,D0+np) = 0

for n≫ 0. The long exact sequence tells us that H1(X,D + np) = 0 as soon as the map

H0
(X0,D0 + np)⊕H

0
(X ′0,D

′
0)Ð→H0

(Z,D + np), (f0, f
′
0)↦ f0∣Z − f

′
0∣Z

is surjective. Actually, the map H0(X0,D + np) → H0(Z,D + np) is surjective for n ≫ 0.
Indeed, H1(X0,D −Z + np) = 0 for n≫ 0 since p is an ample divisor on the curve X0. ∎

Remark 2.1.21. Here we present the case of nodal curves for simplicity, but the same
discussion holds true, with essentially the same proofs, for an arbitrary singular curve. This
is precisely the focus of [AÇL21], where Agostini, Çelik, and Little study the case of singular
curves whose theta divisors in their generalized Jacobians are algebraic.

Remark 2.1.22. The two conditions in Proposition 2.1.20 are automatically satisfied when
the curve X is irreducible. In that case we always get a point U in the Sato Grassmannian.
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2.1.4. Riemann–Roch spaces
Our long-term goal is to fully understand the points U(ϵ) in the Sato Grassmannian that

represent Riemann-Roch spaces of a smooth curve over a valued field, such as K = Q(ϵ).
We explained how these points are computed, and we implemented this in Maple for the
case of hyperelliptic curves. Our approach is similar to [KX21, Nak18, Nak19]. For a given
Mumford curve, it remains a challenge to lift the computation to the valuation ring (such as
Q[ϵ]) and correctly encode the limiting process as ϵ → 0. In this section we focus on what
happens in the limit.

Consider a nodal reducible curve X =X0 ∪ ⋯ ∪Xr, where each irreducible component Xi

is rational. The arithmetic genus g is the genus of the dual graph. We present an algorithm
whose input is a divisor D of degree g − 1 and a point p, supported in the smooth locus of
X. The algorithm checks the conditions in Proposition 2.1.20, and, if these are satisfied, it
outputs a soliton solution that corresponds to U = ι(H0(X,D +∞p)).

We start with some remarks on interpolation of rational functions on P1. Consider
distinct points κ1, . . . , κa and κ1,1, κ1,2, . . . , κb,1, κb,2 on P1. We also choose a divisor D0 =
m1p1+⋅ ⋅ ⋅+msps+mp, which is supported away from the previous points. Choose also scalars
λ1, . . . , λa, µ1, . . . , µb ∈ K. We wish to compute all functions f in H0(P1,D0 +∞p) satisfying

f(κj) = λj for j = 1, . . . , a and f(κj,1) = f(κj,2) = µj for j = 1, . . . , b. (2.1.24)

To do so, we choose an affine coordinate x on P1 such that p =∞. Then we define

P (x) ∶=
s

∏
j=1
(x − pj)

mj and K(x) ∶=
a

∏
j=1
(x − κj) ⋅

b

∏
j=1
(x − κj,1)(x − κj,2).

Write K ′(x) for the derivative of the polynomial K(x). An interpolation argument shows:

Lemma 2.1.23. A rational function f in H0(P1,D0 + ∞p) satisfies condition (2.1.24) if
and only if

f(x) =
K(x)

P (x)

⎡
⎢
⎢
⎢
⎢
⎣

a

∑
j=1

λj
P (κj)

K ′(κj)

1
x − κj

+
b

∑
j=1

µj (
P (κj,1)

K ′(κj,1)

1
x − κj,1

+
P (κj,2)

K ′(κj,2)

1
x − κj,2

) +H(x)

⎤
⎥
⎥
⎥
⎥
⎦

,

where µ1, . . . , µb ∈ K and H(x) is a polynomial in K[x].

Lemma 2.1.23 gives a way to compute the Riemann-Roch space H0(X,E) when E is
a divisor on a nodal rational curve X as above. The normalization of such a curve is an
union of projective lines. On each line we need to compute rational functions with prescribed
values at certain points (corresponding to the intersection of two components of X) and at
certain pairs of points (corresponding to the nodes in the components of X).

Algorithm 2.1.24. The following steps compute the soliton (2.0.6) associated to the curve
data.
Input: A reducible curve X =X0 ∪⋯∪Xr as above, with a smooth point p and a divisor D
of degree g − 1 supported also on smooth points. Everything is defined over K.

(1) Let X0,X
′
0,D0,D

′
0, Z be as in Section 2.1.3. Write Z = {q1, . . . , qa} and let n1, . . . , nb

be the nodes in X0. If ν∶P1 → X0 is the normalization of X0 we set κj ∶= ν
−1(qj)

and {κj,1, κj,2} = ν
−1(nj). We also write D0 = m1p1 + ⋅ ⋅ ⋅ +msps +mp, we fix an affine

coordinate x on P1 such that p =∞, and we compute P (x) and K(x) as in (2.1.24).
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(2) Compute a basis Q1,Q2, . . . ,Qℓ of H0(X ′0,D
′
0). If ℓ = degD′0+1−pa(X

′
0) then proceed.

Otherwise return “Condition (∗∗) in Proposition 2.1.20 fails” and terminate.

(3) Compute the Riemann-Roch space H0(X ′0,D
′
0 −Z). If this is zero then proceed. Oth-

erwise return “Condition (∗) in Proposition 2.1.20 fails” and terminate.

(4) Define the ℓ × a matrix A and the b × 2b matrix B by

Ai,j ∶=
Qi(pj)P (κj)

K ′(κj)
, Bj,2j−1 ∶=

P (κj,1)

K ′(κj,i)
, Bj,2j ∶=

P (κj,2)

K ′(κj,2)
, Bi,j ∶= 0 otherwise.

Output: The (ℓ + b) × (a + 2b) matrix (A 0
0 B

). This represents the soliton solution for the

point ι(H0(X,D +∞p)) in the Sato Grassmannian SGM, after a gauge transformation.

Proposition 2.1.25. Algorithm 2.1.24 is correct.

Proof. By Riemann-Roch, we have h0(X ′0,D
′
0) = h

1(X ′0,D
′
0) + degD′0 + 1 − pa(X

′
0). Hence

condition (∗∗) in Proposition 2.1.20 is satisfied if and only if the condition in step (2) of
Algorithm 2.1.24 is satisfied. Moreover, condition (∗) in Proposition 2.1.20 is precisely the
condition in step (3). Hence, we need to show that the output of the algorithm corresponds
to ι(H0(X,D +∞p)), after a gauge transformation. However, we know that any element of
H0(X,D +∞p) can be written as (f,∑j λjQj) such that f ∈H0(X0,D0 +∞p) and

f(κj) =∑
i

λiQi(κj), for j = 1, . . . , a and f(κj,1) = f(κj,2) for j = 1, . . . , b.

At this point, Lemma 2.1.23 gives us a basis of ι(H0(X,D+∞p)). Remark 2.1.15 shows that
this corresponds exactly to the matrix given by the algorithm, after the gauge transformation
given by multiplying with P (x)/K(x). ∎

We illustrate the algorithm in the following examples.

Example 2.1.26. Let X be an irreducible rational curve with g nodes. Algorithm 2.1.24
returns a matrix B for a (g,2g)-soliton. This is consistent with (2.2.14). Note that the
dual graph associated to the curve X consists in one node with g loops and the associated
Delaunay polytope is a g-dimensional cube. This fact is discussed in detail in Section 2.1.1.

Example 2.1.27 (g = 2). Let X be the union of two smooth rational curves X0,X1 meeting
at three points Z = {q1, q2, q3}. This curve is the special fiber of the genus 2 curve {y2 = f2(x)}
in Example 2.1.1. It corresponds to the graph on the right in Figure 2.2. We choose a smooth
point p ∈X0/Z, and we consider three different divisors of degree one: p, −2q+3p and 3q−2p,
where q is a smooth point in X1. We apply Algorithm 2.1.24 to these three instances.

• Take D = p. Then H0(X ′0,D
′
0) = H

0(P1,O) = K has the constant function 1 as basis.
The conditions in steps (2) and (3) are both satisfied, and the algorithm gives us the
soliton solution corresponding to the matrix A = ( 1

K′(κ1)
1

K′(κ2)
1

K′(κ3)
). Note that

the Delaunay polytope C is a triangle, and the approach in Section 2.1.1 leads to the
gauge-equivalent matrix A = (1 1 1). This also arises for z1 = 0 in Example 2.1.9.

• Take D2 = −2q + 3p. Then H0(X ′0,D
′
0) ≅H

0(P1,−2q) = 0 and the condition in step (2)
is not satisfied. Hence we do not get a point in the Sato Grassmannian.
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• Take D3 = 3q − 2p. Then H0(X ′0,D
′
0) ≅ H

0(P1,3q) has dimension 4 and the condition
in step (2) is satisfied. However, H0(X ′0,D

′
0 − Z) ≅ H

0(P1,O) ≠ 0 so the condition in
step (3) is not satisfied, and we do not get a point in the Sato Grassmannian.

Example 2.1.28 (g = 3). Consider four general lines X = X0 ∪X1 ∪X2 ∪X3 in P2. Set
X0 ∩Xi = κi and Xi ∩Xj = qij for i, j ∈ {1,2,3}. We fix the divisor D = p1 + p2 + p3 − p, for
general points p ∈ X0 and pi ∈ Xi for i = 1,2,3. After the preperatory set-up in step (1), we
compute H0(X ′0,D

′
0) in step (2). This is the space of functions (g1, g2, g3) in ⊕3

i=1H
0(Xi, pi)

such that gi(qij) = gj(qij) for i, j ∈ {1,2,3}. Choose affine coordinates xi on Xi for i = 1,2,3
such that pi =∞. We compute the following basis for H0(X ′0,D

′
0):

Q1 = (0, x2−q12
q23−q12

, x3−q13
q23−q12

) , Q2 = (
x1−q12
q13−q12

,0, x3−q23
q13−q23

) , Q3 = (
x1−q13
q12−q13

, x2−q23
q12−q13

,0) .

Hence ℓ = 3 and the condition in step (2) holds. We also find that H0(X ′0,D
′
0 − Z) = 0, so

that the condition in step (3) is satisfied as well. Algorithm 2.1.24 outputs the soliton matrix

A =

⎛
⎜
⎜
⎝

0 κ1−q12
q13−q12

1
K′(κ1)

κ1−q13
q12−q13

1
K′(κ1)

κ2−q12
q23−q12

1
K′(κ2)

0 κ2−q23
q12−q13

1
K′(κ2)

κ3−q13
q23−q12

1
K′(κ3)

κ3−q23
q13−q23

1
K′(κ3)

0

⎞
⎟
⎟
⎠

. (2.1.25)

The curve X is the last one in [AÇSS21, Figure 2]. The Delaunay polytope C is a tetrahedron,
so Theorem 2.1.8 applies. It would be desirable to better understand the relationship between
the soliton solution (2.1.25), the Hirota variety HC , and the Dubrovin variety in [AÇS21,
Example 6.2].

2.2. Rational nodal curves
For the rest of the chapter we assume X to be an irreducible rational nodal curve of genus

g. Let Γ denote the metric graph associated to X introduced in Section 2.1. In general,
the metric graph associated to an algebraic curve consists of a vertex for each irreducible
component, an edge for each intersection point between two components, and a node on
an irreducible component gives a loop on the corresponding vertex [Cha12]. Therefore, Γ
consists of a unique node and g cycles. Figure 2.5 illustrates an example when g = 5.

1

1

1

1

1

Figure 2.5. The metric graph of an irreducible rational nodal curve of genus 5

The way we read off the tropical Riemann matrix Q from a tropical curve is described in
Section 2.1. When X is an irreducible rational nodal curve the matrices Λ and ∆ both equal
the identity matrix Ig, returning Q = Ig as the tropical Riemann matrix. The distance in-
duced on Rg is therefore the Euclidean distance, and we can fix the point a = (1

2 ,
1
2 , . . . ,

1
2) ∈ R

g

as a vertex of the Voronoi cell for Ig given by the cube with vertices (±1
2 ,±

1
2 , . . . ,±

1
2). Un-

der these hypotheses, the support of the degenerate theta function of Theorem 2.1.2 is the
Delaunay set

C = Da,Ig = {c ∈ Zg
∶ ∥a∥2 = ∥a − c∥2 } = {0,1}g, (2.2.1)
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where ∥⋅∥ denotes the Euclidean norm. The degenerate theta function is then a finite sum of
2g exponentials supported on the vertices of the g-dimensional cube C whose vertices are all
possible binary g-dimensional vectors:

θC(z) = ∑
c∈{0,1}g

ac exp [cT z], where ac = exp[1
2

cTR0c]. (2.2.2)

Here the matrix R0 is the limit of a matrix Rϵ which is a symmetric g×g matrix with entries
given by complex analytic functions in ϵ converging for ϵ→ 0. This comes from degenerating
the family of Riemann matrices given by Bϵ = −

1
ϵQ+Rϵ. The matrices Bϵ lie in the Schottky

locus (see Subsection 1.1.2).
The Hirota varietyHC lives in the space (C∗)2g

×WP3g−1 with coordinate ring C[a±1,u,v,w],
with grading as in (2.0.3). We want to investigate the subvariety denoted by HI

C of the Hirota
variety HC , where the superscript I stands for ‘invertible’. We define this to be the Zariski
closure of the set

{ (a, (u,v,w)) ∈HC ∶ u ≠ 0}. (2.2.3)

This subvariety contains an irreducible subvariety of HC which we call the main component,
denoted by HM

C . In order to rigorously define HM
C , consider the map from the affine space

C3g with coordinates (λ1, . . . , λg, κ1, κ2, . . . , κ2g) into the ambient space of the Hirota variety
HC given by

ϕ ∶ C3g
⇢ (C∗)2

g

×WP3g−1 (2.2.4)
(λ1, . . . , λg, κ1, κ2, . . . , κ2g)↦ (ac1 , ac2 , . . . , ac2g ,u,v,w)

where the coordinates a = (ac1 , ac2 , . . . , ac2g ) are indexed by the points in C = {0,1}g. The
image of ϕ is defined as follows

ui = κ2i−1 − κ2i, vi = κ
2
2i−1 − κ

2
2i, wi = κ

3
2i−1 − κ

3
2i for all i = 1,2, . . . , g,

ac = ∏
i,j∈I
i<j

(κi − κj) ∏
i∶ci=1

λi, where I = {2i ∶ ci = 0} ∪ {2i − 1 ∶ ci = 1} for all c ∈ C. (2.2.5)

We call the closure of the image of ϕ the main component of HC and denote it by HM
C .

The next subsection describes the geometric intuition that leads us to the definition of
the main component HM

C by way of the Abel-Jacobi map for curves and the theta divisor,
see [ACGH85]. Later we will focus on the study of the main component and its connection
to the weak and the classical Schottky problem.

2.2.1. Theta divisor
The theta divisor of a smooth projective curve is a crucial object that controls significantly

the geometry of the curve [ACGH85, §4]. This divisor is cut out in the Jacobian of the
curve by the Riemann theta function (2.0.2) and has an important role in mathematical
physics. Many geometric properties of the theta divisor hold because it can be parameterized
through the Abel-Jacobi map of the curve. Furthermore, this parametrization also applies
to any reasonably singular curve [AÇL21]. Broadly speaking, the theta divisor becomes less
trascendental as the underlying curve becomes more singular. We refer to Chapter 1 and
the references therein for an introduction to the Abal-Jacobi map and the theta divisor in
the case of smooth curves.
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In what follows, we study the theta divisor for the curve X as above, where n1, n2, . . . , ng

denote its nodes. The normalization ν ∶ X̃ →X that separates the g nodes of X is given by a
projective line. We consider κ1, κ2, . . . , κ2g to be points on P1 and set ν−1(ni) ∶= {κ2i−1, κ2i}.
Therefore, each rational curve with at worst nodal singularities corresponds to a copy of P1

and 2g-many points on it. This explains why the moduli space of rational nodal curves has
dimension 2g − 3, where −3 accounts for the dimension of the automorphism group of P1. A
basis ω = (ω1, ω2, . . . , ωg) of canonical differentials for such curves is given by

ωi =
1
y
(

1
1 − κ2iy

−
1

1 − κ2i−1y
)dy for i = 1,2, . . . , g,

where y = 1/x denotes the choice of the local coordinate. The canonical differentials define a
map α′ ∶ (P1)g−1 ⇢ Cg such that

(y1, . . . , yg−1)z→ (
g−1
∑
i=1
∫

yi

0
ωj)

j=1,2,...,g

where ∫

yi

0
ωj = log(1 − κ2j−1yi

1 − κ2jyi
) .

The (generalized) Jacobian of X is an algebraic torus (C∗)g. Exponentiation allows to map in
the Jacobian through the map Cg → (C∗)g given by ((z1, . . . , zg) ↦ (exp[z1], . . . , exp[zg])).
The composition gives the Abel-Jacobi map µg−1 ∶ (P1)g−1 ⇢ (C∗)g defined by

(y1, . . . , yg−1)z→ (
g−1
∏
i=1

1 − κ1yi

1 − κ2yi
,

g−1
∏
i=1

1 − κ3yi

1 − κ4yi
, . . . ,

g−1
∏
i=1

1 − κ2g−1yi

1 − κ2gyi
) . (2.2.6)

The theta divisor of X is the image of the Abel-Jacobi map µ up to translation. We will
later justify why we expect each point in the main component of the Hirota variety HM

C

to correspond (non-injectively) to a choice of a curve together with a theta divisor in the
moduli space of rational nodal curves. Following this reasoning, the projection of HM

C into
the space (C∗)2g has dimension 3g − 3, accounting for the choice of a rational nodal curve
and its theta divisor. For each point in this projection, the fiber is a threefold (analogous to
the Dubrovin threefold studied in [AÇS21]) given by

{ (u,v,w) ∈WP3g−1
∶ τ(x, y, t) = θC(ux + vy +wt) solves (2.1.5)}.

Thus, the expected dimension of the main component is 2g − 3 + g + 3 = 3g.
This discussion also provides a method to parameterize the main component of the Hi-

rota variety. The idea is that the choice of the curve X yields 2g parameters κ1, κ2, . . . , κ2g,
and the family of theta divisors corresponding to shifts of the unknown vector z ∈ Cg yields
g parameters λ = (λ1, λ2, . . . , λg). Using Macaulay2, we can compute the theta divisor as a
shift (through a change of variables) of the image of the map (2.2.6) up to genus 6. This is
done following the method described in [MS21b, Corollary 4.8]. The equation of the theta
divisor returned by the code coincides with (2.2.2) with coefficients a = (a1, a2, . . . , a2g)

parameterized in a way which can be shown, through a change of coordinates and some cal-
culations, to be geometrically equivalent to (2.2.5), up to the parameters λ. More precisely,
this fact justifies the non-uniqueness of the parameterization in (2.2.4). The torus action on
the theta divisor provides new suitable parameterizations. The approach for computing the
theta divisor was inspired by [AÇL21].

To understand how the parameters λ = (λ1, λ2, . . . , λg) arise, we evaluate the Riemann
theta function (2.2.2) at the point z + h ∈ Cg and where h = (h1, h2, . . . , hg) ∈ Cg

θC(z + h) = ∑
c∈C

ac exp[cT h] exp[cT z].
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The two degenerate theta functions, θC(z) and θC(z + h), both provide solutions to the
KP equation (with nonzero ui), hence they correspond to points in HM

C . More explicitly, let
λi ∶= exp[hi], for i = 1, . . . , g, then the points

(a, (u,v,w)), (ã, (u,v,w)) ∈HM
C where ã = (ac exp[cT h])c∈C = (ac ∏

i∶ci=1
λi)

c∈C
.

Thus, we conclude that the choice of theta divisor is exactly represented by the parame-
terizing variables λ = (λ1, λ2, . . . , λg).

Example 2.2.1. (g=3) This example is intended to clarify the role of the parameters in
the case of the 3-cube. As in the discussion above, we fix points κ1, κ2, . . . , κ6 ∈ P1. The
differentials ω = (ω1, ω2, ω3), after the coordinate change y = 1/x, are given by

ω1 =
1
y
(

1
1 − κ2y

−
1

1 − κ1y
)dy, ω2 =

1
y
(

1
1 − κ4y

−
1

1 − κ3y
)dy,

ω3 =
1
y
(

1
1 − κ6y

−
1

1 − κ5y
)dy.

The Abel-Jacobi map µ2 ∶ (P1)2 ⇢ (C∗)3 is defined by

(y1, y2)↦ ((
1 − κ1y1
1 − κ2y1

) ⋅ (
1 − κ1y2
1 − κ2y2

) ,(
1 − κ3y1
1 − κ4y1

) ⋅ (
1 − κ3y2
1 − κ4y2

) ,(
1 − κ5y1
1 − κ6y1

) ⋅ (
1 − κ5y2
1 − κ6y2

)) .

One can compute the implicitizing equation cutting out the image of this map in Macaulay2
with the code

I = ideal(q1*(1-k2*y1)*(1-k2*y2)-(1-k1*y1)*(1-k1*y2),
q2*(1-k4*y1)*(1-k4*y2)-(1-k3*y1)*(1-k3*y2),
q3*(1-k6*y1)*(1-k6*y2)-(1-k5*y1)*(1-k5*y2));
J = eliminate(I,{y1,y2})

The resulting equation gives exactly the familiar theta function for g = 3, with the ac param-
eterized by κ1, κ2, . . . , κ6. For the parameters λ = (λ1, λ2, λ3), consider the theta functions

θC(z) = a000 + a100 exp[z1] + a010 exp[z2] + a001 exp[z3] + a110 exp[z1 + z2] (2.2.7)
+ a101 exp[z1 + z3] + a011 exp[z2 + z3] + a111 exp[z1 + z2 + z3],

and

θC(z + h) = a000 + a100 exp[h1] exp[z1] + a010 exp[h2] exp[z2] + a001 exp[h3] exp[z3]

+ a110 exp[h1 + h2] exp[z1 + z2] + a101 exp[h1 + h3] exp[z1 + z3]

+ a011 exp[h2 + h3] exp[z2 + z3] + a111 exp[h1 + h2 + h3] exp[z1 + z2 + z3].

Letting λi ∶= exp[hi], we have

θC(z + h) = a000 + λ1a100 exp[z1] + λ2a010 exp[z2] + λ3a001 exp[z3] + λ1λ2a110 exp[z1 + z2]

+ λ1λ3a101 exp[z1 + z3] + λ2λ3a011 exp[z2 + z3] + λ1λ2λ3a111 exp[z1 + z2 + z3].

This gives us g parameterizing factors λi with i = 1,2, . . . , g for the variables ac. The code
used for this example is available at the link

https://mathrepo.mis.mpg.de/HirotaVarietyRationalNodalCurve. (2.2.8)

https://mathrepo.mis.mpg.de/HirotaVarietyRationalNodalCurve
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2.2.2. Geometry of the main component
A further reason to introduce the Hirota variety and understanding its geometry is that it

provides an additional formulation and approach to the Schottky problem for nodal curves.
Proving the Schottky problem restricted to irreducible rational nodal curves is equivalent to
showing that the irreducible subvariety of HC , whose points correspond to soliton solutions
arising from such curves, is a component of the expected dimension. This subsection explains
this connection. The following result, in particular, validates the definition of the main
component HM

C and establishes a link with soliton solutions to the KP equation.

Theorem 2.2.2. Consider the map ϕ given in (2.2.4). This is a birational map onto its
image, which is an irreducible subvariety of HM

C and has dimension 3g.

Proof. Let I be as in (2.2.5). Let K ⊆ C3g be the closed set where at least two of the κi

coincide. The expression of τ(x, y, t) = θC(ux + vy +wt) where (a, (u,v,w)) is attained as
the image of a point in C3g ∖K through the map ϕ, described in (2.2.4), is a point in the
Hirota variety HC since it can be expressed as a (g,2g)-soliton [Kod04] for the matrix

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1 1 0 0 0 0 . . . 0 0
0 0 λ2 1 0 0 . . . 0 0
0 0 0 0 λ3 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 0 . . . λg 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.2.9)

Indeed, if we denote Ei ∶= exp(κix + κ
2
i y + κ

3
i t), plugging the parameterization in θC(ux +

vy +wt) we obtain:

τ̃C(x, y, t) =
1

E2E4⋯E2g
(∑

I

∏
i<j∈I

(κi − κj) ∏
i∶ci=1

λi∏
i∈I

Ei), (2.2.10)

where the sets I that define the sum are the same ones defined in (2.2.5). The extraneous
exponential factor (E2E4⋯E2g)

−1 disappears after we pass from τ̃(x, y, t) to ∂2
x log(τ̃(x, y, t)).

Both versions of the (g,2g)-soliton satisfy the Hirota’s bilinear form and they represent the
same solution to the KP equation. Hence, it follows that the image of C3g through the map
ϕ is contained in HC .
Furthermore, the map ϕ is invertible outside the closed set where the ui’s vanish: given a
point (a, (u,v,w)) in the image one can write

κ2i−1 =
u2

i + vi

2ui
and κ2i =

vi − u
2
i

2ui
, (2.2.11)

and the λi’s can be obtained sequentially, starting from λ1, by plugging in the values for the
κ variables into the ai’s. Hence, we can conclude that the map ϕ is birational. This implies
that the closure of the image is irreducible and of dimension 3g. ∎

Notice that the method above provides a method to parameterize solutions arising from
a genus g irreducible rational nodal curve as (g,2g)-solitons. This is also consistent with
Example 2.1.26.

In what follows, we show that HM
C is an irreducible component of HC whose points

correspond to genus g rational nodal curves. This is equivalent to solving a version of the weak
Schottky problem. In fact, HM

C parameterizes some solutions to the KP equation arising from
irreducible rational nodal curves of genus g, and hence corresponds to a variety containing
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the locus of Jacobians of such curves as an irreducible component. For an introduction to
the Schottky problem see Subsection 2.2.4 and the references therein.

Theorem 2.2.3. For genus g ≤ 9, the subvariety HM
C is an irreducible component of the

Hirota variety.

Proof. The proof is mainly computational. A direct computation performed in Macaulay2
shows that the Jacobian matrix of the Hirota variety HC evaluated at the image of a general
point in C3g through ϕ has rank r − (3g), where r is the dimension of the space (C∗)2g

×

WP3g−1. Hence the map ϕ is dominant into the main component HM
C . ∎

The code used for the proof above can be found at the link (2.2.8). The difficulty of
extending the computation to higher genus mainly lies in the fast growth of the number of
variables a = (ac1 , ac2 , . . . , ac2g ). One possibility to compute the ideal defining the variety HC
consists in using the condition provided by the Hirota’s bilinear form (2.1.5), which becomes
computationally expensive when the genus is larger than 7. To avoid this computation,
we implement the equations cutting out HC via the combinatorial description provided in
Subsection 2.1.1.

Example 2.2.4 (The Cube). Let g = 3 and consider the tropical degeneration of a smooth
plane quartic to a rational quartic. The 3-cube associated to the dual graph of a rational
nodal quartic is the support of the degenerate theta function (2.2.7). This agrees with
[AÇSS21, Example 6].

We compute the Hirota variety in (K∗)8×WP8. The set C[2] consists of 19 points. Twelve
are uniquely attained, one for each edge of the cube. These give rise to the three familiar
quartics u4

j − 4ujwj + 3v2
j , one for each edge direction ck − cℓ. Six points in C[2] are attained

twice. They contribute equations like (2.1.10), one for each of the six facets of the cube.
Finally, the point d = (1,1,1) is attained four times. The polynomial (2.2.19) contributed
by d equals

P (u1 + u2 + u3, v1 + v2 + v3, w1 +w2 +w3 )a000a111
+ P (u1 + u2 − u3, v1 + v2 − v3, w1 +w2 −w3 )a001a110
+ P (u1 − u2 + u3, v1 − v2 + v3, w1 −w2 +w3 )a010a101
+ P (−u1+u2+u3, −v1+v2+v3, −w1+w2+w3 )a100a011.

(2.2.12)

If we restrict to the main component we can observe that the additional quartic relation

a000a110a101a011 = a100a010a001a111 (2.2.13)

holds. The main component has dimension 9, while its image in WP8 has dimension 5 and
it is defined by the equations u4

1 +3v2
1 −4u1w1, u

4
2 +3v2

2 −4u2w2, u
4
3 +3v2

3 −4u3w3, with fibers
that are cones over P1×P1×P1. They are defined by seven equations arising from non-unique
(k, ℓ). Six of these are binomials (2.1.10). Extending [Kod17, §2.5], we identify τ(x, y, t)
with (3,6)-solitons for

A =

⎛
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎞
⎟
⎟
⎟
⎟
⎠

. (2.2.14)

By definition, a (3,6)-soliton for the matrix A has the form

τ̃(x, y, t) = ∑
I

∏
i,j∈I
i<j

(κj − κi) ⋅ exp[x ⋅∑
i∈I

κi + y ⋅∑
i∈I

κ2
i + t ⋅∑

i∈I

κ3
i ], (2.2.15)
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where I runs over the eight bases 135,136,145,146,235,236,245,246. To get from (2.2.7) to
this form, we use the following parametric representation of the main component in HC :

u1 = κ1 − κ2 , v1 = κ
2
1 − κ

2
2 , w1 = κ

3
1 − κ

3
2 ,

u2 = κ3 − κ4 , v2 = κ
2
3 − κ

2
4 , w2 = κ

3
3 − κ

3
4 ,

u3 = κ5 − κ6 , v3 = κ
2
5 − κ

2
6 , w3 = κ

3
5 − κ

3
6 ,

a111 = (κ3 − κ5)(κ1 − κ5)(κ1 − κ3)λ0λ1λ2λ3 , a011 = (κ3 − κ5)(κ2 − κ5)(κ2 − κ3)λ0λ2λ3 ,
a101 = (κ4 − κ5)(κ1 − κ5)(κ1 − κ4)λ0λ1λ3 , a001 = (κ4 − κ5)(κ2 − κ5)(κ2 − κ4)λ0λ3 ,
a110 = (κ3 − κ6)(κ1 − κ6)(κ1 − κ3)λ0λ1λ2 , a010 = (κ3 − κ6)(κ2 − κ6)(κ2 − κ3)λ0λ2 ,
a100 = (κ4 − κ6)(κ1 − κ6)(κ1 − κ4)λ0λ1 , a000 = (κ4 − κ6)(κ2 − κ6)(κ2 − κ4)λ0.

If we multiply (2.2.15) by exp[−(κ2+κ4+κ6)x−(κ
2
2+κ

2
4+κ

2
6) y−(κ

3
2+κ

3
4+κ

3
6) t ] then we obtain

the desired function θC(ux+vy+wt) for the above generic point on the Hirota variety. The
extraneous exponential factor disappears after we pass from τ̃(x, y, t) to ∂2

x log(τ̃(x, y, t)).
Both versions of the (3,6)-soliton satisfy (2.0.4) and they represent the same solution to the
KP equation (2.0.1).

An analogous construction works for the cube C = {0,1}g in any dimension g. The
description of the projection of the main component HM

C into the space WP3g−1 given in the
example above reveals itself to be true for any genus:

Proposition 2.2.5. The projection of HM
C into WP3g−1 is a (2g − 1)-dimensional variety

defined by the vanishing of u4
i + 3v2

i − 4uiwi for i = 1,2, . . . , g.

Proof. One direction (i.e., that the relations u4
i + 3v2

i − 4uiwi hold in the projection) is im-
mediate, as these are polynomials defining the Hirota variety (see Lemma 2.2.7) that do not
include any ai. For the other direction, it suffices to exhibit a point in HM

C for any (u,v,w)
which satisfy u4

i + 3v2
i − 4uiwi for all i ∈ [g]. Using the inverse map given in (2.2.11), given

any ui, vi,wi satisfying u4
i + 3v2

i − 4uiwi = 0, we uniquely determine (up to a scaling factor)
κ2i−1, κ2i. We choose arbitrary λ1, . . . , λg to get a point (a, (u,v,w)), so we are done. ∎

We conclude this subsection by stating two conjectures which consolidate and generalize
the results above to any genus. Indeed, a generalization of Theorem 2.2.3 would provide a
solution to the weak Schottky problem for rational nodal curves of genus g.

Weak Schottky Problem. For any genus g, the main component of the Hirota variety
HM
C is a 3g-dimensional irreducible component of HC with a parametric representation given

in (2.2.5).

Strong Schottky Problem. HM
C =H

I
C .

Notice that one direction of the Schottky problem is immediate from the proof of Theorem
2.2.2: a sufficiently generic choice of κi ensures that, in the image, the ui are nonzero, thus
HM
C ⊆ H

I
C . The other direction is more difficult. To prove it, one would need to show that

any point in HI
C can be parameterized as in (2.2.5).

2.2.3. Combinatorics of the main component
The results in this subsection describe in detail facts which we use in many of the proofs

in Section 2.2. We aim to study in detail the Hirota variety HC in connection with the
combinatorics of the support C = {0,1}g. Subsection 2.1.1 describes the equations defining
the Hirota variety, a first step to better understand them in the case of the cube, consists in
describing the set C[2] from (2.1.8).
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Proposition 2.2.6. A point c = (c1, . . . , cg) ∈ C
[2] is attained 2d−1 times, where d = ∣{i ∶ ci = 1}∣.

Proof. For a point c ∈ C[2], consider the set of indices I = {i ∶ ci ≠ 1}. Suppose now c = c1+c2
for some points c1,c2 ∈ C. Then, for any i ∈ I, if ci = 0 then c1i = c2i = 0, while if ci = 2 then
c1i = c2i = 1. In the first case, this means that both c1 and c2 lie on the face of the g-cube
defined by the i-th coordinate hyperplane xi = 0. In the latter case, c1,c2 lie on the face
defined by xi = 1. The full set I of indices corresponding to elements ≠ 1 defines a set of
restrictions on xi for i ∈ I. In fact, it defines a face of codimension ∣I ∣ (and thus dimension
d) that c1 and c2 lie on. Let [g] = {1, . . . , g}. For the indices i ∈ [g] ∖ I, we have exactly
one of c1i, c2i equal to 1. This gives exactly 2d−1 such pairs. These pairs can be viewed as
diagonals of the faces defined by the restrictions given by I: they are the points which are
distinct from one another in each coordinate except for the ones fixed by the face. ∎

As discussed in the proof, the points in C[2] correspond to d-dimensional faces of the
g-cube, where d is the number of coordinates equal to 1. Hence ∣C[2]∣ = ∑g

d=1 2g−d(
g
d
) and the

pairs that sum to points in C[2] correspond to diagonals of the associated face. Another way
to count ∣C[2]∣ is to observe that it consists exactly of the points in {0,1,2}g which have at
least one 1, so there are 3g − 2g of them.

We now investigate the polynomials arising from the points in C[2]. The points which are
attained once correspond to the edges (one-dimensional faces) of the cube and the unique
pair that adds up to such a point are the two vertices ck,cℓ comprising the edge. Hence
these points contribute the quartic

Pkℓ(u,v,w) ∶= P ( (ck − cℓ) ⋅ u, (ck − cℓ) ⋅ v, (ck − cℓ) ⋅w).

Notice that this quartic depends only on the difference ck − cℓ, which is the same for all
edges going in the same direction (that is, all edges whose corresponding point in C[2] has
the unique 1 at the same index). This reasoning yields the immediate result

Lemma 2.2.7. The set C[2] contains g ⋅ 2g−1 points which are uniquely attained. These
contribute as generators of the ideal defining the Hirota variety HC with g quartics of the
form u4

i − 4uiwi + 3v2
i , for i = 1,2, . . . , g.

Recall that the Hirota variety lies in the ambient space (C∗)2g
×WP3g−1. The coordinate

ring is C[a±1,u,v,w] and the ideal defining HC has g +∑g
d=2 2g−d(

g
d
) generators with respect

to inclusion, one for each edge direction, and one for each face of every dimension from 2 up
to g.

The combinatorics of the cube has already been shown to be important when studying
the generators of the Hirota variety. In what follows, we will go over the combinatorics of
the cube in relation to the main component, as well as present a more general version of
Lemma 2.2.7. We begin with some definitions.

We denote by Ĉ the convex hull of the set C = {0,1}g in Rg with coordinates x1, x2, . . . , xg.
A d-dimensional face of the Ĉ is determined by fixing g − d indices of the vertices defining
it. These indices are precisely the ones of the coordinate hyperplanes that define each face.
We call the direction of the face the set of indices I = {i1, i2, . . . , id} that are not fixed.
Furthermore, if two d-dimensional faces have the same direction, we define the difference
between them to be the set J of fixed indices in the two faces which are different.

Example 2.2.8 (g = 3, d = 1). Let C = {0,1}3, the cube Ĉ is displayed in Figure 2.6. The
direction of an edge is given by a set with one element, namely the index of the standard
basis vector to which the edge is parallel. For instance the edges conv((1,0,0), (1,0,1)) and
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conv((1,1,0), (1,1,1)) (in pink in Figure 2.6) are determined respectively by the hyperplanes
{x1 = 0, x2 = 1}, and {x1 = x2 = 1}. Hence, they have the same direction given by I = {3}.

The difference of two edges on the same two dimensional face is also a one-element set,
consisting of the index of the second standard basis vector defining the face (in addition to
the standard basis vector given by the direction). Thus, the two edges above have difference
J = {1} corresponding to the coordinate hyperplane x1 that determines different entries for
the first coordinate of the vertices spanning the edges.

(0,0,0)
(1,0,0)

(1,1,0)(0,1,0)

(1,0,1)(0,0,1)

(0,1,1) (1,1,1)

Figure 2.6. The 3-dimensional cube given by the vertices in C = {0,1}3.

In the following result, we restrict to the main component HM
C of the Hirota variety. We

are interested in the points in HM
C that also verify the quartic relations

ac1ac2ac3ac4 = ad1ad2ad3ad4 , with
4
∑
i=1

ci =
4
∑
i=1

di,
4
∑
i=1

c2
i =

4
∑
i=1

d2
i , (2.2.16)

where ci,di are points in C = {0,1}g. Here, given a vector c ∈ C, we write c2 to denote the
dot product cT ⋅ c. For g = 3, there exists a unique relation of this type, namely the one in
(2.2.13). In particular, when the ai are exponentials of the form ac = exp[12cR0cT ], as in
(2.2.2), then they verify these quartic relations. In general, one has

Lemma 2.2.9. The closure of the image of the map ψ ∶ Sym2(Cg)→ P2g−1 defined by

R ↦ (ac = exp [1
2

cTRc] )
c∈{0,1}g

(2.2.17)

is cut out by the equations in (2.2.16) and the additional equation a0 = 1.

Proof. An immediate computation shows that the points in the image of ψ verify the relations
in (2.2.16) and a0 = 1. To show converse, we consider a point a = [ac1 ∶ ac2 ∶ ⋅ ⋅ ⋅ ∶ ac2g ] ∈ P2g−1,
with entries indexed by points in C, such that it verifies the desired equations. Define the
matrix R ∈ Sym2(Cg) with entries given by

Rii = 2 log aei and Rij = log
aei+ej

aeiaej

for i, j ∈ [g], i ≠ j,

where ei denotes the i-th vector in the standard basis of Zg and log denotes the natural
logarithm. In this way, by definition we have that

aei = exp [1
2
eT

i Rei] and aei+ej = exp [1
2
(ei + ej)

TR(ei + ej)] for i, j ∈ [g], i ≠ j.
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Notice that the points in C are indexed by all possible subsets of the set [g] = {1,2, . . . , g},
and they are all of the form cI = ∑i∈I ei, with c∅ = 0. Hence we proceed by induction on the
size n of the support I. The cases n = 1,2 have been verified above. Hence, we assume that
the acI

have the desired form for any I ⊂ [g] with ∣I ∣ ≤ n − 1.
It is sufficient to prove the claim for the element ae1+⋅⋅⋅+en . By hypothesis, it verifies a

relation of the form

ae1+⋅⋅⋅+en =
ae1+⋅⋅⋅+en−1 ⋅ ae1+⋅⋅⋅+en−2+en ⋅ aen−1+en ⋅ a0

ae1+⋅⋅⋅+en−2 ⋅ aen−1 ⋅ aen

, (2.2.18)

where all the factors on the right-hand side of the equality are of the prescribed exponential
form. Observe that, for cI as above, in general one has

acI
= exp

⎡
⎢
⎢
⎢
⎢
⎣

1
2
(∑

i∈I

ei)

T

R(∑
i∈I

ei)

⎤
⎥
⎥
⎥
⎥
⎦

= exp[1
2
(∑

i∈I

Rii + ∑
i,j∈I
i≠j

Rij)].

Substituting such exponentials in the right-hand side of Equation (2.2.18) we obtain that

ae1+⋅⋅⋅+en = exp [1
2
(e1 + ⋅ ⋅ ⋅ + en)

TR(e1 + ⋅ ⋅ ⋅ + en)] .

This concludes the proof. ∎

Theorem 2.2.10. There are (gd) face directions for each dimension d, and all faces with the
same direction contribute the same quartic, up to a multiple, to the ideal defining HM

C .

Proof. Consider two d-dimensional faces of the g-cube with the same direction. This means
that their corresponding points c1,c2 ∈ C

[2] have 1s in exactly the same positions. Both
points have 2d−1 pairs which sum to them, and these pairs can be put in a correspondence.
Namely, for a pair ck,cℓ that sums to c1, the pair c̃k, c̃ℓ is a pair that sums to c2, where
ã is obtained from a by changing the entry from 0 to 1 (or vice-versa) for every index in
the difference of the two faces. For the two pairs, (ck,cℓ) and (c̃k, c̃ℓ), their corresponding
quartic Pkl is the same, since it is easy to see that ck − cℓ = c̃ℓ − c̃k.

Recall from Subsection 2.1.1, that the generators of the ideal I(HC) corresponding to
d-dimensional faces with d > 1 are of the form

∑
1≤k<ℓ≤m
ck+cℓ =d

Pkℓ(u,v,w)akaℓ, (2.2.19)

where d ∈ C[2] is not uniquely attained. In what follows, we show that, when we restrict
to the main component HM

C , a d-dimensional face with direction D contributes the same
quartic, up to a multiple, as the face corresponding to the point cD = ∑i∈D ei. We have
already shown that the Pkℓ are the same for faces with the same direction. Thus, it is
sufficient to show that the polynomial

ack
acℓ
− d ⋅ ac̃k

ac̃ℓ

is in the ideal defining HM
C , where d is a factor (in fact, a product of some ac’s) which does

not depend on k, ℓ, instead it depends only on the difference and direction of the two faces.
For ease of computations, we fix a direction D and we will take one of the faces (F1) to be

the face corresponding to the point c1 = ∑i∈D ei. The other face (F2) is a face with direction
D and difference E from F1. Hence, the point corresponding to F2 is c2 = ∑i∈D ei +∑i∈E 2ei.
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Since we will show that the quartic contributed by F2 is the same as the one contributed by
F1 up to a multiple, this will show that all faces with the same direction contribute essentially
the same polynomial to the ideal defining HM

C .
Recall that the ac are given by exp[12cRcT ], where we write R for R0 from Equa-

tion (2.2.2). Consider a pair ck,cℓ ∈ C such that c1 = ck + cℓ. Then, there exist two disjoint
subsets D1,D2 ⊆ D such that D = D1 ∪D2, and ck = ∑i∈D1 ei and cℓ = ∑i∈D2 ei. It follows
that c̃k = ∑i∈D1∪E ei and c̃ℓ = ∑i∈D2∪E ei.

We will now use the linear algebra fact that for a symmetric g × g symmetric matrix, the
following hold

(∑
i∈I

ei)R(∑
j∈J

ej)

T

= ∑
i∈I,j∈J

Rij

Therefore, we have

ac̃k
ac̃ℓ
= exp[ 1

2 ∑
i,j∈D1∪E

Rij] exp[ 1
2 ∑

i,j∈D2∪E

Rij] = exp[ 1
2 ∑

i,j∈D∪E

Rij] exp[ 1
2 ∑i,j∈E

Rij]

which one can easily see is a multiple of exp[ 1
2 ∑i,j∈D Rij] = ack

acℓ
which only depends on

the sets D and E, as desired. ∎

One can observe that Theorem 2.2.10 is a generalization of Lemma 2.2.7 to equations
arising from points in C[2] which correspond to higher dimensional faces. This holds for points
in the main component HM

C . Moreover, Theorem 2.2.10 reduces the number of potentially
non-redundant relations holding in the ideal defining the variety HM

C to 2g − 1. This is also
the codimension of HM

C inside its ambient space (C∗)2g
×WP3g−1. Our code in (2.2.8) verifies

that this set of generators defines a variety which is a complete intersection, of which HM
C is

a component for g ≤ 9.

2.2.4. Quartic relations and the Schottky locus
This subsection provides a discussion relating quartic relations among the a parameters

appearing in the degenerate theta function (2.2.2) and the Schottky problem. We write Ig

for the Schottky locus of abelian varieties corresponding to Jacobians of curves of genus g.
The second order theta constants, [vG98] defined as

Θ[m](z,B) ∶= θ [m0 ] (2z,2B),

provide an embedding ι ∶ Ag ↪ P2g−1 of Ag into a projective space. Recall that the theta
function appearing on the right-hand side is the theta function with characteristic defined
in (1.1.3). In the setting provided by the maps

Mg
J
Ð→ Ag ↪ P2g−1, (2.2.20)

to solve the Schottky problem, one aims to determine the defining ideal of ι(Ig) ⊂ ι(Ag).
In genus 4, we have dimM4 = 9 = 10 − 1 = dimA4, and hence the ideal I4 is an analytic
hypersurface in A4. In fact, in genus 3, the second order theta constants verify an equation
of degree 16 which leads to the equation characterizing Jacobians of curves in genus 4, i.e.,
Igusa’s equation, see [vG16, Example 6.2], [Igu82]. An analogous situation can be described
when looking at the degenerate theta functions arising from irreducible rational nodal curves.
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The map ψ in (2.2.17) provides an embedding of the space Sym2(Cg) in the projective space
P2g−1. The dimension count for these spaces is analogous to the one for the spaces involved
in (2.2.20). In particular, for genus 3, we find that im(ψ) = Sym2(C3) inside P7. Note
that the image of the map ψ is contained in the locus V (a111a100a010a001−a110a101a011a000),
where the relation among the ai’s comes from (2.2.13). Equality then follows by a direct
computation since these are both irreducible varieties of equal dimension. We believe a
similar situation should hold for higher genus. We aim to pursue this direction as a future
project.

2.3. Conclusions
In this section, we outline the main research directions in the study of the connection

between algebraic curves with nodal singularities and KP theory directed toward future work.
Analogously to what was done in Section 2.2 when the Delaunay set is the g-cube, a

natural direction to investigate consists in studying the Hirota varieties for the 17 Delau-
nay polytopes in Table 2.1. This includes computing equations, irreducible decomposition,
dimensions, and all the relevant geometric invariants.

Moreover, the Hirota variety provides a further way of attaining KP solutions. Never-
theless, the relationship between solutions obtained from the Sato Grassmannian and from
the Hirota variety is not well understood. More precisely, having fixed an algebraic curve
C, in both constructions, a choice is needed: studying the degeneration of the Riemann
theta function requires one to pick a point a ∈ Zg; analogously, to construct a point in the
Sato Grassmannian a divisor D and a point p on the curve have to be fixed. Moreover,
in Subsection 2.1.4 we presented examples of divisors on rational nodal curves from which
one cannot build a point in the Sato Grassmannian. This discussion motivates the following
open problem:

Problem 2.3.1. Given a complex algebraic curve C of genus g with at worst nodal singu-
larities, understand the relation between the degeneration of the Riemann theta function via
a ∈ Zg and the choice of the divisor D and point p on the curve.

In the same spirit of the previous problem, the following connection deserves further inves-
tigation:

Problem 2.3.2. Study how the choice of the pair (p,D) on the curve C corresponding to
a soliton solution relates to the point in the positive Grassmannian and the soliton graphs
studied by Kodama and Williams [KW14].

As discussed in the previous section, another reason for introducing the Hirota variety and
understanding its geometry is that it provides an additional formulation and approach to the
Schottky problem for nodal curves. Solving the Schottky problem restricting to irreducible
rational nodal curves is, in fact, equivalent to showing that the irreducible subvariety of HC ,
whose points correspond to soliton solutions arising from such curves, is a component of the
expected dimension. Besides the conjectures stated at the end of Subsection 2.2.4, one can
investigate the following

Combinatorial Schottky Problem. Determine the equations defining the locus of Jaco-
bian varieties of irreducible rational nodal curves in genus 4 and 5.

In genus 4, one approach to attack this problem is to apply the degeneration from Theo-
rem 2.1.2 to the theory developed to solve the Schottky problem for smooth algebraic curves.
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In higher genus, partial results exist for smooth curves [FGSM21, vG16]. This also inspires
further progress for the nodal case, with the advantage that, when the curve is singular, the
theta function is a finite sum of exponentials, and understanding the combinatorics of the
support C provides new approaches to the problem. This is essentially the rationale behind
the adjective “combinatorial” being used to describe the Schottky problem for nodal curves.
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Chapter 3

Particle physics and very affine varieties

By addressing unsolved problems regarding the geometric objects arising in scattering
amplitudes from both the physics and mathematics perspectives, this chapter tries to forge
links between algebraic geometry and particle physics. We present material from the papers
[ABF+23] and [AFST22]. Both articles discuss how various physics questions can be reduced
to studying properties and geometry of certain algebraic varieties. In either case, we deal
with very affine varieties, that is, closed subvarieties of an algebraic torus. Very affine
varieties have recently received considerable attention due to their central role in tropical
geometry [Tev07] and to their connection to the problem of maximum likelihood estimation
in algebraic statistics [Huh13].

In particle physics, very affine varieties arise when counting the number of critical points
of the potential function, or equivalently, the number of solutions to the scattering equations
[CEGM19, CHY14, CUZ20, ST21]. We connect the study of such solutions to computing the
maximum likelihood (ML) degree of the likelihood function in algebraic statistics. In fact,
in both fields, one aims to count the number of solutions to a system of rational equations
over a very affine variety X. Huh [Huh13] proved that, when the variety is smooth, this
number coincides with the Euler characteristic of X. When studying the potential function,
the variety X is the moduli space of m points in Pk−1 in linearly general position

X(k,m) = Gr(k,m)○/(C∗)m, with k ≥ 2. (3.0.1)

Section 3.1 answers several questions raised in the physics literature pertaining to bounded
regions in discriminantal arrangements and to moduli spaces of point configurations. We
introduce the likelihood degenerations, a type of degenerations in algebraic geometry and
numerical nonlinear algebra, inspired by the soft limits in [CUZ20]. The study of such
degenerations allows one to compute the Euler characteristic of X(k,m) for several cases,
proving some conjectures stated in [CUZ20].

A further crucial problem in scattering amplitudes and quantum field theory consists in
finding basis for prescribed families of Feynman integrals. These are integrals associated with
connected undirected graphs known as Feynman diagrams, which encode the interaction pat-
terns in a scattering process mediated by internal particles, as explained in Appendix A. Nu-
merical evaluation of Feynman integrals is a crucial step for computing scattering amplitudes.
A first step in this direction is to define a finite-dimensional vector space of such integrals
and establish linear relationships between them. Therefore, one expresses more complex in-
tegrals in terms of basis integrals, also referred to as master integrals in the physics literature.
Implementing algorithms to compute basis of master integrals and linear relations among
them is a topic undergoing intense study in particle physics [FGM+19, FGL+21, MM19].
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Feynman integrals in the Lee–Pomeransky representation [LP13] are concrete, non-trivial
examples of a class of well-studied and more general integrals called generalized Euler inte-
grals. More explicitly, these are integrals of the form

∫Γ
fs+a xν+b dx

x
= ∫Γ

⎛

⎝

ℓ

∏
j=1

f
sj+aj

j

⎞

⎠
⋅ (

n

∏
i=1
xνi+bi

i )
dx1
x1
∧⋯ ∧

dxn

xn
. (3.0.2)

Here, x = (x1, . . . , xn) are coordinates on (C∗)n and f = (f1, . . . , fℓ) denotes a tuple of ℓ
Laurent polynomials in x.We use multi-index notation, i.e., fs denotes f s1

1 ⋯f
sℓ

ℓ , and similarly
for xν . The integration contour Γ is chosen compatibly with the polynomials f so that the
integral (3.0.2) converges. We will later make this precise. The exponents νi, sj take on
complex values, whereas ai, bj ∈ Z are thought of as integer shifts.

Section 3.2 studies the vector spaces associated with a family of such integrals. Their
dimension, which is the number of master integrals when (3.0.2) is a Feynman integral,
is given by the Euler characteristic of a very affine variety. In this context, the relevant
very affine variety is the complement of the vanishing locus of the product f1⋯fℓ in the
n-dimensional algebraic torus

X = {x ∈ (C∗)n ∣ f1(x)⋯fℓ(x) ≠ 0} = (C∗)n ∖ V (f1⋯fℓ) ⊂ (C∗)n.

We investigate this number using tools from homological algebra and D-module theory,
uncover new relations between these approaches, and provide new algorithmic tools.

The structure of this chapter is as follows. The novel approaches to compute the Euler
characteristics of the very affine varieties (3.0.1) are illustrated in the Subsection 3.1.1, and
Subsections 3.1.5 and 3.1.7. They rely on techniques from combinatorics and numerical
nonlinear algebra, in addition to algebro-geometric tools. Subsection 3.1.1 concerns the
deletion maps

πk,m ∶ X(k,m + 1) → X(k,m). (3.0.3)

These maps are shown to be stratified fibrations. We discuss both the fibers (Subsection
3.1.2) and the strata (Subsection 3.1.3), setting the stage for the computation of Euler
characteristics by combinatorial methods. Subsection 3.1.4 focuses on techniques to com-
pute the Euler characteristic of the space X(3,m) of m points in general position in the
projective plane P2. Subsection 3.1.5 presents a detailed analysis of the tropical geometry
of soft limits for configurations of eight points in projective 3-space. In Subsection 3.1.6
we turn to algebraic statistics, and we follow up on earlier work on likelihood degenera-
tions due to Gross and Rodriguez [GR14]. We introduce the tropical version of maximum
likelihood estimation for discrete statistical models. This arises by replacing the real num-
bers R by the Puiseux series field R{{t}}, in both the data and the solutions. Our main
result (Theorem 3.1.28) characterizes the tropical MLE for linear discrete models. In Sub-
section 3.1.7 we present numerical methods for likelihood degenerations, with an empha-
sis on recovering the description of tropical curves from floating point coordinates. This
extends the tropical MLE approach in Subsection 3.1.6 from linear models to other very
affine varieties, and it allows us to find tropical solutions to scattering equations in particle
physics. The code used in this section together with computational results are available at
https://mathrepo.mis.mpg.de/LikelihoodDegenerations.

Section 3.2 aims to provide all of the tools required to demonstrate the equalities in
Theorem 3.2.1. We start by carefully introducing the three vector spaces VΓ, Vs,ν , Vc∗ of
Euler integrals that can be distinguished depending on the choice of parameters one fixes.
More explicitly, in Subsection 3.2.1, we recall twisted de Rham cohomology and homology

https://mathrepo.mis.mpg.de/LikelihoodDegenerations
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with coefficients in a local system. We study the vector space VΓ and relations between its
generators. Subsection 3.2.2 recalls definitions about algebras of differential and difference
operators, and revisits the Mellin transform adapted to our setup. This is used to investigate
Vs,ν . We discuss how to algorithmically obtain relations between the generators of VΓ and
Vs,ν , which is relevant in practice. Proposition 3.2.20 provides new insights in connections
between the relations for these two different vector spaces. Subsection 3.2.3 presents the
GKZ system leading to Vc∗ , and recalls the background. At this point, our main result
(Theorem 3.2.1) follows as a corollary of Theorems 3.2.7, 3.2.23, and 3.2.28, which state the
result in different contexts. Subsection 3.2.4 presents numerical methods to compute χ(X),
and to find relations among the integrals in the case of VΓ. We also highlight what genericity
means in each context. We provide examples illustrating the theory and demonstrate how
to run computations using different software systems. Our setup applies to the generalized
Euler integrals in (3.0.2), and is not restricted to Feynman integrals. However, we discuss
this special case in several remarks.

The code used in Subsection 3.2.4, together with our other computational examples, can
be found at the link https://mathrepo.mis.mpg.de/EulerIntegrals.

3.1. Point configurations
This section revolves around a very affine variety arising in particle physics [CEGM19,

CUZ20], namely the moduli space X(k,m) of m points in Pk−1 in linearly general position.
More explicitly, this moduli space parametrizes m-tuples [P ] = [P1, . . . , Pm] of points Pi ∈

Pk−1 such that no k of them lie on a hyperplane. Moreover, the m-tuples are considered only
up to the action of GL(k,C). The dimension of X(k,m) equals (k − 1)(m − k − 1). Observe
that X(2,m) is the familiar (m − 3)-dimensional moduli space M0,m = Gr(2,m)○/(C∗)m of
genus zero curves with m marked points. These spaces are central to the Cachazo–He–Yuan
(CHY) formulas for biadjoint scalar amplitudes [CHY14].

We next present a parametrization which shows that X(k,m) is very affine. Taking
homogeneous coordinates for the points Pi, any m-tuple [P ] as above can be represented by
a complex k ×m matrix whose k × k minors are all nonzero. Two such representations are
equivalent if and only if they differ by left multiplication by GL(k,C), or by a rescaling of the
columns by an element in the torus (C∗)m. Hence, this identifies X(k,m) as the quotient

X(k,m) = Gr(k,m)○/(C∗)m, (3.1.1)

where Gr(k,m) is the Grassmannian of k-dimensional subspaces in Cm and Gr(k,m)○ is
the open cell where all Plücker coordinates pi1...ik

are nonzero. We can uniquely write the
homogeneous coordinates of an m-tuple [P ] ∈X(k,m) as the columns of the k ×m matrix

Mk,m =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0 (−1)k 1 1 1 . . . 1
0 0 0 . . . (−1)k−1 0 1 x1,1 x1,2 . . . x1,m−k−1

⋮ ⋮ ⋮ . .
.

⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋮

0 0 −1 . . . 0 0 1 xk−3,1 xk−3,2 . . . xk−3,m−k−1
0 1 0 . . . 0 0 1 xk−2,1 xk−2,2 . . . xk−2,m−k−1
−1 0 0 . . . 0 0 1 xk−1,1 xk−1,2 . . . xk−1,m−k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.1.2)

provided all maximal minors pi1...ik
of this matrix are nonzero. The antidiagonal matrix in

the left k×k block was chosen so that each unknown xi,j equals such a minor for i1 < ⋯ < ik.

https://mathrepo.mis.mpg.de/EulerIntegrals
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This identifies X(k,m) as an open subset of the torus (C∗)(k−1)(m−k−1) with coordinates xi,j .
The Plücker embedding realizes X(k,m) as a closed subvariety of a high-dimensional torus:

X(k,m)↪ (C∗)(
m
k
), Mk,m ↦ (pi1...ik

) . (3.1.3)

As aforementioned, in particle physics, very affine varieties arise when computing critical
points of the potential function on the moduli space X(k,m). Such a function is analogous
to the log-likelihood function in statistics, namely

Lk,m = ∑
i1...ik

ui1...ik
⋅ log(pi1...ik

). (3.1.4)

The critical point equations, known as scattering equations in physics, are given by

∂Lk,m

∂xi,j
= 0 for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤m − k − 1. (3.1.5)

This is a system of rational function equations. One way to compute the ML degree of
X(k,m) is by counting the number of solutions for general values of the parameters ui1...ik

.
This can be done by finding explicit solutions to (3.1.5), notably by the numerical approach
described in [ST21, §3] which rests on the software HomotopyContinuation.jl [BT18]. The
connection between maximum likelihood and scattering equations was first developed in
[ST21]. While the maximum likelihood degree MLdegree(X(2,m)) is known to be (m− 3)!,
see [ST21, §2], much less is known for k ≥ 3. Cachazo, Umbert and Zhang [CUZ20] intro-
duced a class of degenerations called soft limits to compute some of the unknown cases. In
what follows, we develop novel techniques to gain a mathematical understanding of that
construction from physics. We succeed in reaching this understanding, and we present our
results using effective methods that connect complex geometry, tropical combinatorics, and
numerical nonlinear algebra.

3.1.1. Likelihood degenerations
Recall that a very affine variety X is a closed subvariety of an algebraic torus (C∗)n. For

any integer vector u = (u1, . . . , un) ∈ Zn, the Laurent monomial zu = zu1
1 ⋯z

un
n is a regular

function on (C∗)n, and we are interested in the set of critical points of zu on X. The
natural approach is via the gradient of the log-likelihood function log(zu) = ∑n

i=1 uilog(zi).
This makes sense for any complex vector u ∈ Cn. The coordinates of ∇log(zu) are rational
functions, and we seek points z ∈ X at which that gradient vector lies in the normal space.
This leads to a system of rational function equations whose solutions are the critical points.
Their number is independent of u, provided u is generic. This is an invariant of X, denoted
MLdegree(X), and known as the maximum likelihood degree; see [CHKS06, GR14, Huh13,
HS14]. Whenever X is smooth, we know from [Huh13, Theorem 1] that it coincides with
the signed Euler characteristic of X:

MLdegree(X) = (−1)dim X
⋅ χ(X). (3.1.6)

The term likelihood comes from statistics [PS05]. A discrete statistical model on n − 1
states is a subset M of the probability simplex ∆n−2 = {(z1, . . . , zn−1) ∈ Rn−1

>0 ∶ z1 +⋯+ zn−1 =
1}. In algebraic statistics, the model M is a semialgebraic set, and one replaces M by its
Zariski closure X. That closure is taken in the torus (C∗)n, where zn = z1 +⋯ + zn−1. After
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collecting data, we write ui ∈ N for the number of samples in state i. The monomial zu is
the likelihood function. The goal of likelihood inference is to maximize zu over M . Thus,
statisticians seek those critical points of log(zu) that are real and positive. The ML degree of
X is an algebraic complexity measure for performing likelihood inference with the model M .

The term degeneration comes from algebraic geometry. It represents the idea of studying
the properties of a general object Xt for t ≠ 0 by letting it degenerate to a more special object
X0, which is often easier to understand. This corresponds to finding a nice compactification
of the variety X 0 = ∪t≠0Xt to a variety X , by adding the special fiber X0. There are
many possibilities for such constructions. Most relevant in our context are the tropical
compactifications in [MS21a, §6.4] and their connection to likelihood inference in [vdVS22].

Likelihood degenerations arise when the coefficients ui1⋯ik
depend on a parameter t, and

one studies the behavior of the solutions in the limit t → 0. A special instance are the
soft limits of Cachazo et al. [CUZ20]. This likelihood degeneration is presented in (3.1.20).
We explain in Subsection 3.1.5 how soft limits are related to the methods in this section.
Subsections 3.1.6 and 3.1.7 explore arbitrary likelihood degenerations, with a view towards
statistics and numerics.

Another approach to computing the ML degree is topological, through the Euler char-
acteristic. Indeed, since the variety X(k,m) is smooth, the formula (3.1.6) applies and
gives

MLdegree(X(k,m)) = (−1)(k−1)(m−k−1)
⋅ χ(X(k,m)). (3.1.7)

Our strategy to compute the Euler characteristic is to exploit the deletion map in (3.0.3):

πk,m∶X(k,m + 1)Ð→X(k,m), [P1, . . . , Pm, Pm+1]↦ [P1, . . . , Pm].

This approach relies on the fact that the Euler characteristic is multiplicative along fibrations.

Example 3.1.1 (k = 2). The space X(2,3) is a single point, so χ(X(2,3)) = 1. For m ≥ 3 we
consider the map π2,m∶X(2,m+1)Ð→X(2,m). A point below is identified with an m-tuple
[P1, . . . , Pm], where Pi ∈ P1 are pairwise distinct, and P1 = (0 ∶ −1), P2 = (1 ∶ 0), P3 = (1 ∶ 1)
are fixed. The fiber over this point equals F = P1∖{P1, . . . , Pm}. This has Euler characteristic
2 −m. All fibers are homeomorphic to F , so the map π2,m is a fibration. Multiplicativity of
the Euler characteristic along fibrations implies

χ(X(2,m + 1)) = χ(F ) ⋅ χ(X(2,m)) = (2 −m) ⋅ χ(X(2,m)).

By induction on m, we conclude that χ(X(2,m)) = (−1)m−3(m − 3)!.

Our main difficulty for k ≥ 3 is that the deletion map πk,m is generally not a fibration.
But it is a stratified fibration, that is, it is a map f ∶X → Y of complex algebraic varieties such
that Y has a stratification S = {S ⊆ Y } by finitely many closed strata, with the property
that, over each open stratum S○ = S ∖⋃S′⊊S S

′, the map is a fibration with fiber FS .
The set S of all strata S in a stratified fibration f ∶X → Y is naturally a poset, ordered

by inclusion. We can use this combinatorial structure to compute the Euler characteristic of
X. The following result is standard but we include it here for the sake of reference.

Lemma 3.1.2. Let f ∶X → Y be a stratified fibration and µ the Möbius function of S. Then

χ(X) = ∑
S∈S

χ(S) ⋅ ∑
S′∈S,S′⊇S

µ(S,S′)χ(FS′)

= χ(Y ) ⋅ χ(FY ) + ∑
S∈S

χ(S) ⋅ ∑
S′∈S,S′⊇S

µ(S,S′) ⋅ (χ(FS′) − χ(FY )).
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Proof. By the excision property of the Euler characteristic, together with the multiplicativity
along fibrations, we know that χ(X) = ∑S′∈S χ(S

′○) ⋅χ(FS′). We can rewrite this as follows:
for any closed stratum S′ ∈ S we have χ(S′) = ∑S′⊇S χ(S

○). The Möbius inversion formula
yields χ(S′○) = ∑S′⊇S µ(S,S

′)χ(S). Plugging this into the previous formula, we obtain the
first equality in Lemma 3.1.2. The second equality comes from the definition of the Möbius
function, which stipulates that ∑S′⊇S µ(S,S

′) = 0, for a fixed stratum S ∈ S ∖ {Y }. ∎

Lemma 3.1.2 can be used to compute the ML degree of a very affine variety X that
is smooth. If we are given a stratified fibration X → Y , then the computation reduces to
the topological task of computing the Euler characteristics of the fibers and of the strata,
together with the combinatorial task of computing the Möbius function of the poset.

We shall apply this method to the deletion map in (3.0.3). For this, we need to argue
that this map is a stratified fibration, which requires us to identify the strata and the fibers.
The fibers are complements of discriminantal arrangements, to be discussed thoroughly in
Section 3.1.2. The strata are given by a certain matroidal stratification, see Section 3.1.3.
We describe the general setting here, and we will give explicit computations for the case
k = 3 in Section 3.1.4.

First, let us consider the fibers. Given a representative [P ] = [P1, . . . , Pm] for an element
of X(k,m), the corresponding discriminantal arrangement is the set B(P ) of all hyperplanes
linearly spanned by any set of k−1 points Pi1 , . . . , Pik−1 . Observe that these span a hyperplane
because of the requirement that the points are in linearly general position. The fiber of πk,m

over [P ] is the complement of this hyperplane arrangement:

π−1
k,m([P ]) ≅ Pk−1

∖ ⋃
H∈B(P )

H. (3.1.8)

The Euler characteristic of such a complement is found with the methods in Section 3.1.2.
One subtle aspect of this computation is that all objects are taken up to the action of GL(k,C).

This description also indicates the appropriate stratification of X(k,m): it depends on
the linear dependencies satisfied by the ( m

k−1) hyperplanes in the arrangement B(P ). This
comes from a certain matroid stratification. Let us give an example for the case k = 3:

Example 3.1.3. Consider π3,6∶X(3,7) → X(3,6). To any [P ] in X(3,6) we associate the
arrangement of 15 lines PiPj . Move one of them to the line at infinity in P2. For generic [P ],
the number of bounded regions in the resulting arrangement of 14 lines is the Euler char-
acteristic of the fiber π−1

3,6([P ]). This number is 42, as we shall see in Section 3.1.2. For
special fibers the Euler characteristic drops. Consider [P ] where the lines P1P2, P3P4, P5P6
are concurrent. These three lines are not in general position [BS06, Figure 4-3]. The Euler
characteristic of the fiber of π3,6 over [P ] is 41. Our stratification of X(3,6) must account
for this.

In general, the situation is as follows. Each point of X(k,m) is represented by a k ×m
matrix Mk,m as in (3.1.2). We consider the (k−1)st exterior power ∧k−1Mk,m of that matrix.
That new matrix has k rows and ( m

k−1) columns, and its entries are the signed (k−1)×(k−1)
minors of Mk,m. Each column of ∧k−1Mk,m is the normal vector to the hyperplane spanned
by k−1 points Pi1 , . . . , Pik−1 . Here we allow for the possibility that the column vector is zero,
which means that Pi1 , . . . , Pik−1 lie on a (k − 2)-plane in Pk−1. Taking the exterior power is
equivariant with respect to the action of GL(k,C), so we obtain a map of Grassmannians

Gr(k,m) → Gr(k, ( m
k−1)). (3.1.9)
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We now consider the matroid stratification [BS06, §4.4] of the big Grassmannian Gr(k, ( m
k−1)).

The strata correspond to arrangements of ( m
k−1) hyperplanes in Pk−1 that have a fixed in-

tersection lattice. We next consider the pullback of this matroid stratification under the
map (3.1.9). This is a very fine stratification of Gr(k,m). Its strata correspond to point
configurations whose discriminantal hyperplane arrangement has a fixed intersection lattice.
This stratification is much finer than the matroid stratification of Gr(k,m). In particular,
it defines a highly nontrivial stratification of the open cell Gr(k,m)○. This stratification of
Gr(k,m)○ is compatible with the action of the torus (C∗)m, given that all our constructions
are based on projective geometry. Passing to the quotient in (3.1.1), let Sk,m denote the
induced stratification of X(k,m). We call this the discriminantal stratification of the space
X(k,m).

Proposition 3.1.4. The deletion map πk,m∶X(k,m + 1) → X(k,m) defines a stratified fi-
bration with respect to the discriminantal stratification on the very affine variety X(k,m).

Proof and discussion. Each fiber of πk,m is the complement of a discriminantal hyperplane
arrangement. These arrangements have fixed intersection lattice as the base point [P ] ranges
over an open stratum of Sk,m. This implies that the Euler characteristic is constant on each
fiber. This is what we need to be a fibration on each stratum. It is possible that the
homotopy type varies across such fibers [Ryb11]. This would require further subdivisions
into constructible sets. But, all we need here is for the Euler characteristic to be constant. ∎

In conclusion, the topological approach to computing the ML degree of X(k,m) consists
of two parts: computing the Euler characteristic of the fibers, which is done in Subsec-
tion 3.1.2, and computing the Euler characteristic of the matroid strata, which is done in
Subsection 3.1.3.

3.1.2. Discriminantal hyperplane arrangements
The fibers of the deletion map (3.0.3) are complements of discriminantal hyperplane

arrangements, see (3.1.8). By Varchenko’s Theorem [CHKS06, Theorem 3], the ML degree
is the number of bounded regions. In this subsection we focus on the generic fiber. This
arises from the ( m

k−1) hyperplanes spanned by m generic points in Pk−1. Such arrangements
have been studied for decades, e.g. in [Cra85, Fal94, KNT12, OT13]. Our general reference
on the relevant combinatorics is [Sta01]. We show that, for fixed k, the number of bounded
regions is a polynomial in m of degree (k − 1)2. This polynomial was denoted Softk,m in
[CUZ20]. We display it explicitly for k ≤ 7. Our result extends to all coefficients of the
characteristic polynomial (Theorem 3.1.7). Its proof rests on constructions of Koizumi,
Numata and Takemura in [KNT12].

We work with two models in real affine space. First, fix m general points in Rk−1. We
write A(k,m) for the arrangement of ( m

k−1) hyperplanes spanned any k − 1 of these points.
Second, we consider the set B̃(k,m) of ( m

k−1) hyperplanes through the origin in Rk that
are spanned by any k − 1 of the columns of the matrix Mk,m in (3.1.2), where the xi,j are
generic. Let B(k,m) be the restriction of this hyperplane arrangement to Rk−1 ≃ {x1 = 1}.
Thus B(k,m) is an affine arrangement of ( m

k−1) − 1 hyperplanes in Rk−1. As pointed out
by Falk in [Fal94], the combinatorics of the arrangement A(k,m) is not independent of the
choice of the m general points as for some choices the dependencies among those points ad-
mit “second-order” dependencies beyond the Grassmann-Plücker relations. Following Bayer
and Brandt [BB97] we assume that the m points are very generic in the sense that such
dependencies do not appear. All such very generic choices yield combinatorially equivalent
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arrangements A(k,m), see also [SY22] for a discussion of non-very generic discriminantal
arrangements.

In Subsection 3.1.4 we will explore non-very generic degenerations of these discriminantal
arrangements. Both A(k,m) and B(k,m) are induced by the open cell in the large Grass-
mannian under an embedding of the form (3.1.9). But their combinatorial structures are
different.

Figure 3.1. The discriminantal line arrangements A(3,4) (left) and B(3,4) (right).

Example 3.1.5 (k = 3,m = 4). The arrangement A(3,4) consists of the six lines that are
spanned by four general points in the affine plane R2. Its complement in R2 consists of 18
regions, of which six are bounded. The arrangement B(3,4) is obtained from A(3,4) by
moving one of the six lines to infinity. Thus B(3,4) consists of five lines, which divide R2

into 12 regions, of which two are bounded. The two arrangements are shown in Figure 3.1.
Their characteristic polynomials (3.1.10) are χA(3,4)(t) = t

2−6t+11 and χB(3,4)(t) = t
2−5t+6.

m = 2 3 4 5 6 7 8 9
k = 2 0 1 2 3 4 5 6 7

3 0 2 13 42 101 205 372
4 0 6 192 1858 10644 44595
5 0 24 5388 204117 3458276
6 0 120 255180 46545915
7 0 720 18699210

Table 3.1. The number of bounded regions of B(k,m) for various k and m. See
Remark 3.1.6.

It is the second arrangement, B(k,m), which plays the center stage for our applica-
tion. We shall reduce its analysis to that of A(k,m), so we can use results of Koizumi et
al. [KNT12].
Remark 3.1.6. The generic fiber of the map πk,m is the complement of a hyperplane ar-
rangement in complex projective space Pk−1 that is combinatorially isomorphic to B(k,m).
Hence the Euler characteristic of the generic fiber equals the number of bounded regions of
B(k,m).

We begin with some basics from [S+04]. Given an arrangementA of hyperplanesH1, . . . ,HN

in real affine space Rd, we write FI = ⋂i∈I Hi for any subset I of [N] ∶= {1, . . . ,N}. The collec-
tion of nonempty FI forms a poset L(A) by reverse inclusion. This is called the intersection
poset, and it is graded by the codimension of FI . The characteristic polynomial is

χA(t) = ∑
FI∈L(A)

µ(FI) ⋅ t
d−codim(FI) =∶

d

∑
i=0
(−1)d ⋅ bi(A) ⋅ t

d−i (3.1.10)
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where µ(FI) = µ(Rd, FI) is the Möbius function of L(A). The coefficients {bi(A)}
d
i=0 are the

Betti numbers of A. They are nonnegative integers. The components of the complement of
the arrangement in Rd are called the regions of A. Zaslavsky [Zas97] showed that the regions
are counted, up to sign, by χA(−1). The bounded regions of A are counted by ∣χA(1)∣.

We are interested in the characteristic polynomials of the generic discriminantal arrange-
mentsA(k,m) and B(k,m) defined above. The following is our main result in this subsection.

Theorem 3.1.7. For fixed k, the Betti numbers of A(k,m) and B(k,m) are polynomials in
the parameter m. Here the i-th Betti number is a polynomial of degree i(k −1). The number
of bounded regions of either arrangement is given by a polynomial in m of degree (k − 1)2.

In light of Remark 3.1.6, we are primarily interested in the number of bounded regions
of B(k,m). Cachazo et al. [CUZ20, §3] wrote these as polynomials of degree 4 and 9 for
k = 3,4. This led to the polynomiality conjecture that is proved here. We list our polynomials
for k ≤ 7:

k = 3: 1
(2!)3 (m − 4)(m3 − 6m2 + 11m − 14)

k = 4: 1
(3!)4 (m − 5)(m8 − 13m7 − 5m6 + 1019m5 − 7934m4 + 29198m3 − 57510m2 + 57276m − 20736)

k = 5: 1
(4!)5 (m − 6)(m15

− 34m14
+ 536m13

− 6016m12
+ 56342m11

− 324124m10
− 737436m9

+ 33755560m8
− 324772079m7

+ 1784683822m6
− 6330080036m5

+ 14844484456m4
− 22600207744m3

+ 21093515136m2
− 10696725504m + 2188394496)

k = 6: 1
(5!)6 (m−7)(m24

−68m23
+2199m22

−44982m21
+643996m20

−6596728m19
+44404954m18

−71800572m17
−3127304119m16

+54378585092m15
−490514132181m14

+1776590470858m13
+18487658083746m12

−378944155004728m11
+3596483286643204m10

−23256569552060072m9
+111789542126956376m8

−412236512413133568m7
+1177950138000941824m6

−2598297935794415232m5

+4348400923758960000m4
−5332505009742720000m3

+4499090747884800000m2
−2314865713121280000m+540696010752000000)

k = 7: 1
(6!)7 (m − 8)(m35

− 118m34
+ 6721m33

− 246112m32
+ 6510988m31

− 132696712m30
+ 2174185716m29

− 29636017152m28

+347341371054m27
−3619686930036m26

+34412884983870m25
−297168540668160m24

+2163013989971700m23
−9541316565707160m22

− 57505724652057900m21
+ 2082608669563706400m20

− 30141885880045284135m19
+ 290868328355522261370m18

−1789045412885731209655m17
+2410419545362804828960m16

+98045335860104486976824m15
−1463950567334046862107632m14

+ 13043235985765459517500784m13
− 86372694744783734157998048m12

+ 451792193002382546052610752m11

− 1910783375678688560288108928m10
+ 6590586320126085204961058304m9

− 18548788372955608600206309888m8

+ 42375051122462107996615842816m7
− 77750332979800481270501750784m6

+ 112672771830431700211895132160m5

− 125767704870432247378231296000m4
+ 104081289628186508359680000000m3

− 60012326911967527500840960000m2

+ 21475615998699753858662400000m − 22531557235936983)

Each polynomial gives the values in one row of Table 3.1. See also the list at the end
of [KNT12].

We now embark towards the proof of Theorem 3.1.7, beginning with the following lemma.

Lemma 3.1.8. The characteristic polynomials of A(k,m) and B(k,m) are related as follows:

χA(k,m)(t) ⋅ t − χA(k,m)(1) = χB(k,m)(t) ⋅ (t − 1).

Proof. The central arrangement B̃(k,m) is the cone over B(k,m). This gives the relation

χ
B̃(k,m)(t) = χB(k,m)(t) ⋅ (t − 1).

The restriction CH of any central arrangement C to a hyperplane H not containing the origin
satisfies χCH(t) ⋅ t − χCH(1) = χC(t). We apply this fact to C = B̃(k,m) and H = {x1 = 1}.
This implies the assertion because the restriction of C to H is precisely CH = A(k,m). ∎
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Example 3.1.9. The discriminantal arrangement B̃(3,4) given by four vectors in R3 satisfies

χ
B̃(3,4)(t) = t3 − 6t2 + 11t − 6.

The characteristic polynomials in Example 3.1.5 are derived from this. We obtain χA(3,4)(t)
by deleting the constant term and dividing by t. We obtain χB(3,4)(t) by dividing by t − 1.

Corollary 3.1.10. The number of bounded regions of B(k,m) is given, up to a sign, by

χB(k,m)(1) =
d

dt
χA(k,m)(1) + χA(k,m)(1).

Koizumi et al. [KNT12] provide formulas for χA(k,m) for 1 ≤ k ≤ 7 and general m. The
coefficients of their characteristic polynomials, i.e. the Betti numbers, are polynomials in m.
We show that this trend continues. The extension to B(k,m) follows from Lemma 3.1.8.

Lemma 3.1.11. The Betti numbers of both A(k,m) and B(k,m) are polynomials in m.

Proof. We shall use [KNT12] to derive the result for A(k,m). We set d = k − 1 and
write L(d,m) for the intersection poset of A(k,m), with Möbius function µd,m. Note that
µd,m({∅}) is the number of bounded regions in A(k,m). In [KNT12], the elements F of
L(d,m) are grouped according to partitions γ = (γ1, . . . , γℓ), called the type of F . The num-
ber of elements of type γ is denoted λd,m(γ). A main result of [KNT12] is that the Möbius
function applied to F depends only on the type of F . Hence, the characteristic polynomial
of L(d,m) equals

χd,m(t) =
d

∑
i=0
∑
γ⊢i

λd,m(γ)µd,m(γ)t
d−i. (3.1.11)

We will show that λd,m(γ) and µd,m(γ) are both polynomials in m for fixed d. Then
(3.1.11) implies that the coefficients of the characteristic polynomial are polynomials in m
as well. Proposition 4.7 of [KNT12] gives the following formula:

λd,m(γ) =
1

∏
d
k=1mk(γ)!

∑
ν

(ν(I2) +⋯ + ν(I2ℓ))!
ν(I2)!⋯ν(I2ℓ)!

(
m

ν(I2) +⋯ + ν(I2ℓ)
). (3.1.12)

Here, mk(γ) is a constant depending on k and γ, and 2[ℓ] is the power set of [ℓ]. This set is
ordered {I1, . . . , I2ℓ} with I1 = ∅. The sum in (3.1.12) is over all maps ν ∶ 2[ℓ] → N satisfying

(i) ∑i∈I ν(I) = d + 1 − γi for all i ∈ [ℓ],

(ii) ∑I⊂I′ ν(I
′) < d + 1 −∑i∈I γi for all I with ∣I ∣ > 1, and

(iii) ∑I∈2[ℓ] ν(I) = m.

Note that as m grows by one, the indexing set of these maps essentially remains the same;
the only difference is that ν(∅) is also incremented by one. Since ν(∅) = ν(I1) does not
appear in the binomial in (3.1.12), the expression (3.1.12) is polynomial in m.

Proposition 4.1 of [KNT12] gives a recursive definition for µd,m(γ) in terms of µd′,m′({∅})

for strictly smaller d′ and m′. Since these are the numbers of bounded regions of A(k′,m′)
for strictly smaller k′ and m′, their polynomiality follows inductively, proving the result. ∎
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Proof of Theorem 3.1.7. The Betti number bi of interest is the coefficient of td−i in χd,m(t).
We know that this is a polynomial inm. We first argue that the degree of this polynomial is at
most d ⋅i, and then we show that it has degree at least d ⋅i. For the upper bound, we note that
the i-th Betti number of a generic arrangement with (md ) hyperplanes in Rd is a polynomial
in m of degree d ⋅ i. Any other arrangement with the same number of hyperplanes, including
discriminantal ones, must have Betti numbers bounded by these generic Betti numbers.

To derive the lower bound, we recall that, by definition of the Betti numbers in (3.1.10),

bi = ∑
F ∈L(d,m)

codim(F )=i

µd,m(F ). (3.1.13)

All terms in this sum have the same sign. Suppose m > d ⋅i and consider all Te1 , . . . , Tei ⊂ [m]
where each Tej consists of d points and Tej ∩ Tek

= ∅ for 1 ≤ j < k ≤ i. These collections
correspond to the codimension i flats ⋂i

j=1Hj where Hj is the hyperplane spanned by the
points indexed by Tej . These are special flats in our arrangement. Their number is

1
d!
(
m

d
) ⋅ (

m − d

d
) ⋅ ⋯ ⋅ (

m − id + d

d
)

i factors
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

.

This product of i binomial coefficients is a polynomial in m of degree d ⋅ i. Therefore, the
degree of bi as polynomial in m is at least d ⋅i. This completes the proof of Theorem 3.1.7. ∎

Corollary 3.1.12. The ML degree of the generic fiber of πk,m is a polynomial of degree
(k−1)2.

We presented formulas for these ML degrees for k ≤ 7 and arbitrary m. These play a
major role in the stratified fibration approach of Subsection 3.1.1. However, in addition to
the generic fiber, we also need to know the Euler characteristic for the fiber over each stratum
in the base space X(k,m). All of these fibers are discriminantal arrangements, arising from
lower-dimensional matroid strata in the large Grassmannian on the right hand side of (3.1.9).
In other words, we need to compute χA(1) for many large hyperplane arrangements A.

In practise, this task can now be accomplished easily, thanks to the software recently
presented in [BEK21]. This implementation was essential to us in getting this project started,
and in validating the polynomial formulas for B(k,m) displayed above. We expect it to be
useful for a wide range of applications, not just in mathematics, but also in physics and
statistics.

3.1.3. Matroid strata
In our topological approach to computing the ML degree of X(k,m), we encountered

special strata of points and lines in Pk−1 with prescribed incidence conditions. Such strata
can be modeled as matroid strata. Such matroid strata are very affine varieties. In Theo-
rem 3.1.14 we furnish a comprehensive study for small matroids of rank k on m elements.
Note that the uniform matroid corresponds to X(k,m). We compute the ML degrees for
all matroids in the range k = 3,m ≤ 9 and k = 4,m = 8. For larger matroids this would
become infeasible by Mnëv’s Universality Theorem [BS06, §6.3]. Our result is achieved by
integrating software tools from computer algebra [BKLH], combinatorics [MMIB12a], and
certified numerics [BRT20, BT18].

From now on, all matroids are assumed to be simple, so the term “matroid” will mean
“simple matroid”. We shall comprehensively study all small matroids. For a matroid M of
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rank k on m elements, we consider the points in Gr(k,m) whose nonzero Plücker coordinates
are precisely those indexed by the bases ofM . LetX(M) be the quotient of that constructible
set modulo the action of (C∗)m. One represents X(M) by a k ×m matrix with at least one
entry 1 per column and some unknown entries that satisfy equations and inequations of
degree ≤ k − 1 arising from nonbases and bases. This encoding shows that X(M) is a very
affine variety. If M is the uniform matroid then X(M) =X(k,m). The aim of this subsection
is to compute the ML degree of X(M) for every matroid of small size.

Example 3.1.13 (k = 3,m = 9). The Pappus matroid M (shown in Figure 3.2a) has the
nonbases

123 148 159 247 269 357 368 456 789.
These are precisely the triples that index the vanishing 3 × 3 minors of the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1 y 0 1 y
0 1 x 0 1 y 1 0 1
0 0 0 1 1 1 1/(1−x) x/(y(x−1)) 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.1.14)

Indeed, the stratum X(M) for the Pappus matroid is the set of pairs (x, y) ∈ (C∗)2 such
that all (93) − 9 = 75 other maximal minors are nonzero. The log-likelihood function equals

u1log(x)+u2log(y)+u3log(1−x)+u4log(1−y)+u5log(1−x−y)+u6log(1−xy)+u7log(xy−x−y).

The two partial derivatives of this expression are rational functions in x and y. By equating
these to zero, we obtain a system of equations that has precisely eight solutions in (C∗)2,
provided u1, u2, . . . , u7 are general enough. Hence the stratum of the Pappus matroid M is
a very affine variety X(M) of dimension 2 whose ML degree is equal to 8. It is one of the
12 matroids of rank 3 on 9 elements with these invariants, marked 812 in Theorem 3.1.14.

We now present the result of our computations for matroids of rank k on m elements.
For fixed k,m, we list the matroid strata by dimension, and we list all occurring ML degrees
together with their multiplicity of occurrences. For instance, the string 25[1,24] accounts for
five strata of dimension 2: four have ML degree 2 and one has ML degree 1. If the variety
X(M) is reducible, then we list the ML degree for each component, e.g. in the format (3,3)2.

Below we follow the convention in the applied algebraic geometry literature (e.g. [OS16])
to assign a star to a theorem obtained by a numerical computation which was not fully
certified.

Theorem* 3.1.14. The strata X(M) are smooth for all matroids M with k = 2 or (k = 3
and m ≤ 9) or (k = 4 and m = 8). Their ML degrees are given in the following lists.
For k = 3,m = 5 there are 4 matroids, up to permuting labels, and all are realizable over C:

21[21] 12[12] 01[11].

For k = 3,m = 6 there are 9 matroids, up to permuting labels, and all are realizable over C:
41[261] 31[61] 24[11,23] 12[12] 01[11].

For k = 3,m = 7 there are 22 orbits of C-realizable matroids:

61[12721] 51[1921] 43[242,381] 37[21,64,101,121] 26[11,23,42] 13[12,21] 01[11]

For k = 3,m = 8 there are 66 orbits of C-realizable matroids:

81[1881121] 71[212401] 63[15601,21361,29761] 57[1202,2642,3681,5201,5681]
416[41,61,245,381,551,562,721,801,881,1202] 316[21,64,102,163,171,182,241,251,321]

214[24,43,51,63,71,82] 16[11,24,31] 02[11,21]
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For k = 3,m = 9 there are 368 orbits of C-realizable matroids:
101[745704001] 91[67500001] 83[3499201, 5657061, 7306561],

78[139201, 246241, 435121, 444961, 564481, 730241, 946681, 998081]
622[7203, 20402, 28562, 36961, 51601, 66481, 67001, 67081, 67961, 77521, 86461,

86841, 91521, 113921, 119721, 148801, 151321, 187681]
545[02, 121, 241, 1206, 2642, 3602, 4801, 5001, 5122, 6721, 7122, 7201, 7801, 9221, 9481, 9561, 9601, 10921,
12201, 12641, 12941, 12963, 13161, 13641, 16721, 17361, 17441, 17561, 18061, 22741, 22921, 26281, 26481]
477[01, 41, 61, 245, 381, 563, 804, 822, 962, 1162, 1182, 1191, 1201, 1243, 1321, 1441, 1501, 1561, 1622, 1661,

1681, 1722, 1741, 1861, 1921, 2001, 2221, 2241, 2282, 2323, 2361, 2381, 2401, 2422, 2431, 2441, 2621,
2721, 2801, 2921, 3021, 3061, 3121, 3181, 3241, 3302, 3361, 3421, 3761, 4161, 4242, 4341, 4561, 4601]

393[02, 64, 103, 166, 171, 182, 246, 251, 264, 271, 301, 321, 342, 352, 365, 373, 383, 391, 405, 422, 442, 462,
472, 511, 524, 542, 551, 564, 582, 601, 641, 662, 682, 703, 722, 762, 841, 861, 1021, 1041, 1081]
278[01, 23, 44, 68, 73, 812, 93, 1010, 114, 127, 133, 142, 153, 167, 171, 183, 192, 301, (18, 18)1],

134[03, 210, 38, 47, 52, 62, (3, 3)2] 08[13, 25]
For k = 4,m = 8 there are 554 orbits of C-realizable matroids:

91[5211816] 81[5166731] 75[212402, 463921, 523921, 630401]
614[12722, 15602, 21361, 29762, 51361, 69762, 76001, 94241, 103682]

540[261, 1204, 1924, 2646, 3683, 4881, 5202, 5682, 6921, 7081, 7701, 9361, 9501,
10803, 12941, 12962, 13221, 14001, 17101, 17681, 18122]

489[03, 41, 62, 2414, 261, 389, 551, 568, 723, 803, 884, 1041, 1152, 1206, 1221, 1342, 1361, 1543,
1622, 1802, 1811, 2161, 2201, 2241, 2261, 2322, 2362, 2721, 2823, 2882, 3082, 3842, 4101]

3153[11, 28, 630, 1015, 125, 1613, 175, 1810, 249, 255, 272, 281, 327, 341, 353, 365, 381,
392, 401, 451, 462, 481, 506, 511, 523, 532, 551, 562, 582, 642, 662, 671, 722, 1041]
2153[18, 235, 429, 51, 618, 710, 816, 92, 106, 116, 128, 133, 143, 153, 182, 191, 242]

181[04, 120, 236, 39, 49, 52, (2, 2)1] 018[115, 23]

Proof. This was obtained by exhaustive computations. The matroids were taken from the
database [MMIB12a] that is described in [MMIB12b]. The GAP packages alcove [Leu20] and
ZariskiFrames [BKLH] were used to obtain a representing k ×m matrix, such as (3.1.14),
along with further equations for nonbases and inequations for bases, whenever needed. The
details of the underlying algorithm are described in [BK21]. From this matrix, together
with the defining equations, we compute the ML degree as the number of critical points of
the log-likelihood function. This is illustrated in Example 3.1.13. These computations were
performed using the Julia package HomotopyContinuation.jl [BT18]. See also [ST21].
The ML degrees of the uniform matroids U3,7, U3,8, U3,9, U4,8 are derived and discussed in
Subsections 3.1.4 and 3.1.5. ∎

Remark 3.1.15. As the method of homotopy continuation is numerical, it is inherently sub-
ject to rounding errors. Hence, the numbers in Theorem 3.1.14 come with this disclaimer as
well. For those numbers which are not underlined, we successfully performed the certification
method described in [BRT20], using the implementation conveniently available in [BT18].
Subsection 4.2.4 goes into greater detail about how this method works. Such a certified
result delivers a mathematical proof that our number bounds the true ML degree from be-
low. Of the six underlined entries, two are the uniform matroids U3,9 and U4,8 (discussed
in Subsections 3.1.4 and 3.1.5) and another is a matroid whose ML degree is computed
in Example 3.1.23. The certificates proving the correctness of our results can be found at
https://zenodo.org/record/7454826#.Y6DCdezMKdY.

We now briefly discuss some special matroids that appear in our lists, shown in Figure 3.2.

Example 3.1.16. The Pappus matroid was seen in Example 3.1.13. The non-Fano matroid
has k = 3 and m = 7. It is projectively unique, so its stratum has dimension 0 and ML degree
1. The affine geometry AG(2,3) has k = 3 and m = 9. It is also known as the dual Hessian
configuration. Its stratum is 0-dimensional of degree 2. Hence, its ML degree is 2. The

https://zenodo.org/record/7454826#.Y6DCdezMKdY
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(a) Pappus matroid (b) Non Fano matroid (c) AG(2, 3) (d) ML degree 0 matroid

Figure 3.2. Geometric representations of the matroids discussed in Examples 3.1.13
and 3.1.16.

table for k = 3,m = 9 lists nine C-realizable matroids with ML degree 0. The one with the
fewest nonbases has 6 nonbases; its stratum is 4-dimensional and has degree 4. A geometric
representation of this matroid has the form of 3 × 3 grid and is depicted in Figure 3.2d.

3.1.4. Points and lines in the plane

We now study the moduli space X(3,m) of m labeled points in P2 in linearly general
position. Cachazo, Umbert and Zhang [CUZ20] report that the ML degree of X(3,m)
equals 26 for m = 6, 1 272 for m = 7, and 188 112 for m = 8. These numbers are denoted N (3)m

in [CUZ20]. Thomas Lam [ABF+23, Appendix A] derived them using finite field methods,
and he also computed

N
(3)
9 = MLdegree(X(3,9)) = 74 570 400.

We present a topological proof of these results, and we prove the conjecture in [CUZ20, §6].
This involves a careful study of the stratified fibration (3.0.3). The combinatorics we develop
along the way, such as posets of strata and Möbius functions, should be of independent
interest.

The moduli space X(3,m) is very affine of dimension 2m − 8. Here is what we know
about its Euler characteristic.

Theorem 3.1.17. The ML degree of X(3,m) is given by the following table for m ≤ 9:

m 4 5 6 7 8 9
χ(X(3,m)) 1 2 26 1 272 188 112 74 570 400

These numbers are easy to prove for m ≤ 6. A computational proof for m = 6 appeared
in [CEGM19, Appendix C]. The numbers for m = 7,8 were derived with the soft limit
argument in [CUZ20]. This was a proof in the sense of physics but perhaps not in the
sense of mathematics. The verification by numerical computation was presented in [ST21,
Proposition 5]. Thomas Lam had derived and proved all numbers, including the m = 9 case,
using finite field methods, see [ABF+23, Appendix A].

The aim of this subsection is to solve this problem for general m using the stratified
fibration approach in Subsection 3.1.1. Our techniques will be of independent interest. In
particular, they can be adapted to give a geometric proof for each of the ML degrees of
matroids in Theorem 3.1.14. As a warm-up, here are geometric proofs for the first three
numbers in Theorem 3.1.17.
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Example 3.1.18 (m = 4,5,6). The space X(3,4) is just a point, hence χ(X(3,4)) = 1. The
very affine surface X(3,5) is the complement of the arrangement B(3,4) in Example 3.1.5.
We have χ(X(3,5)) = 2, by Varchenko’s Theorem, as there are two bounded regions on the
right in Figure 3.1. For m = 6, we consider the deletion map π3,6 ∶ X(3,6) → X(3,5). The
discriminantal arrangement for any five points in P2, with no three on a line, is isomorphic to
B(3,5). All fibers of π3,6 are homotopy equivalent to the complement of B(3,5). Hence π3,6
is a fibration, where each fiber has Euler characteristic 13, by Table 3.1. The base X(3,5)
has Euler characteristic 2. Hence their product 26 is the Euler characteristic of X(3,6).

We now consider m ≥ 6. Following Subsection 3.1.1, we study the stratification S3,m of
X(3,m). The codimension one strata are all combinatorially equivalent: they are the loci
of configurations [P ] = [P1, . . . , Pm] where three lines PiPj , PkPl, PrPs meet in a new point
in P2. We write S(ij)(kl)(rs) for this stratum in X(3,m). All other strata are intersections
of those, hence they can be denoted by a collection of triples (ij)(kl)(rs). For m = 6, there
are 15 distinct codimension one strata S(ij)(kl)(rs), one for each tripartition of {1, . . . ,6}.
All other strata in S3,6 are obtained by intersecting these 15 divisors. We found that S3,6
has two combinatorially distinct codimension two strata, two codimension three strata and
two codimension four strata. In Table 3.2 we list all strata explicitly, up to combinatorial
equivalence. Figure 3.3 shows point configurations [P1, . . . , P6] for three among the seven
strata in our list.

Type Codim Representatives for the divisors (i, j)(k, l)(r, s) that intersect in the stratum
I 1 (12)(34)(56)
II 2 (12)(34)(56),(12)(35)(46)
III 2 (12)(34)(56),(15)(23)(46),(14)(26)(35)
IV 3 (12)(34)(56),(15)(23)(46),(14)(26)(35),(15)(26)(34)
V 3 (12)(34)(56),(12)(35)(46),(13)(26)(45),(14)(25)(36),(15)(24)(36),(16)(23)(45)
VI 4 (12)(34)(56),(12)(35)(46),(14)(23)(56),(14)(26)(35),(15)(23)(46),(15)(26)(34)
VII 4 (12)(34)(56),(12)(35)(46),(13)(24)(56),(13)(26)(45),(14)(25)(36),

(14)(26)(35),(15)(23)(46),(15)(24)(36),(16)(23)(45),(16)(25)(36)

Table 3.2. All types of strata in the 4-dimensional very affine variety X(3,6).

Figure 3.3. Geometric representation of the strata of Type I, II, and IV in Table 3.2

For our proof of Theorem 3.1.17, we shall use Lemma 3.1.2, here rewritten in the specific
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form
χ(X(3,m + 1)) = χ(X(3,m)) ⋅ χ(FX(3,m)) − ∑

S∈S

χ(S) ⋅ ρ(S), (3.1.15)

where we define
ρ(S) ∶= ∑

S′∈S,S′⊇S

µ(S,S′) ⋅ (χ(FX(3,m)) − χ(FS′)). (3.1.16)

For a fixed stratum S, the sum in (3.1.16) is over all S′ that contain S. These form a
subposet PS (actually, a filter) of the poset S3,m. It turns out that for many strata S, the
factor ρ(S) is zero. This drastically simplifies the computation. Let us illustrate this with
an example.

Example 3.1.19. Consider the map π3,6 ∶X(3,7)→X(3,6). Figure 3.4 shows the subposets
for the two codimension three strata, of type IV and V, together with the Möbius function
values at each node. The poset is ranked by codimension: zero for the top stratum, and three
for the bottom stratum. Our aim is to compute ρ(S). Let us look at the left poset PS . The
codimension zero stratum S′ has χ(FS′) = χ(FX(3,6)) by definition. The codimension one
strata have χ(FX(3,m))−χ(FS′) = 1, by Example 3.1.3. Looking at the strata of codimension
two, we find that those of type III have χ(FX(3,6)) − χ(FS′) = 3, whereas those of type II
have χ(FX(3,6)) − χ(FS′) = 2. Finally, the stratum of type IV has χ(FX(3,6)) − χ(FS′) = 4.
With this, one computes

ρ(S) = −2 ⋅ 0 + 3 ⋅ (1 ⋅ 1) + 2 ⋅ 1 + (−1) ⋅ 3 + 3 ⋅ (−1 ⋅ 2) + 1 ⋅ 4 = 0.

●
-2

●1 I ●2 I●1 I●1 I

●-1 II ●-1 II●-1 II●-1 III

●1 IV

●
-6

●2 I ●2 I ●2 I ●2I ●2I ●2 I

●-1 II ●-1 III ●-1 III ●-1 III ●-1 III ●-1 II ●-1 II

●1 V

Figure 3.4. The posets PS for the codimension three strata in X(3,6). The numbers
in black are the values of the Möbius function. The types of the strata are shown in
blue.

This phenomenon generalizes to other strata and to all spaces X(3,m). Indeed, the
only strata S ∈ S3,m for which ρ(S) ≠ 0 are those whose lines meet in only one extra
special point apart from the original ones. This is illustrated in [CUZ20, Figure 8]. More
precisely, for each stratum S, let [P ] = [P1, . . . , Pm] be a general element in S, and for each
h ≥ 3 denote by nh(S) the number of points, apart from P1, . . . , Pm, where exactly h lines
of the discriminantal arrangement B(P ) meet. The following result proves the conjecture
in [CUZ20, §6]:

Theorem 3.1.20. Every stratum S ∈ S3,m satisfies ρ(S) ∈ {−1,0,+1}. More precisely:

(a) If nh(S) = 1 for some h and ni(S) = 0 for all i ≠ h, then ρ(S) = (−1)h−1.

(b) In all other cases, we have ρ(S) = 0.
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Item (b) is the punchline: a stratum S does not contribute to the Euler characteristic
unless it looks like [CUZ20, Figure 8]. To prove this, we introduce some further notation. For
any stratum S ∈ S3,m let σ(S) ∶= χ(FX(3,m))−χ(FS). When the discriminantal arrangement
in the fiber FS over S is realizable over R, this denotes the difference between the numbers
of bounded regions in B(3,m) and in FS . Applying the Möbius inversion formula to (3.1.16)
yields

σ(S) = ρ(S) + ∑
S′∈PS∖{S}

ρ(S′). (3.1.17)

We start by computing the function σ(S) in terms of the counting function nh(S):

Lemma 3.1.21. Every stratum S ∈ S3,m satisfies σ(S) = ∑∞h=3 (
h−1

2 ) ⋅ nh(S).

Proof. Let B be the discriminantal arrangement associated to the fiber FS . Let B(3,m) be
as in Subsection 3.1.2. Its characteristic polynomial is χB(3,m) = t

2−((m2 ) − 1) t+b2(B(3,m))
where b2(B(3,m)) is the second Betti number of B(3,m). Using (3.1.10), the characteristic
polynomial of the special arrangement B equals

χB(t) = t2 − ((
m

2
) − 1) t + b2(B(3,m)) −

∞

∑
h=3

nh(S)(
h

2
) +

∞

∑
h=3

nh(S)(h − 1),

since every additional intersection point of h lines in B removes (h2)many generic codimension
two elements of L(B(3,m)) and adds a summand with Möbius value h−1. Evaluating these
two polynomials at t = 1 and taking their difference yields the claim. ∎

We now show that σ is monotonic with respect to the poset S in the following sense.

Lemma 3.1.22. Let S′, S ∈ S3,m be two strata such that S′ ⫌ S. Then σ(S′) < σ(S).

Proof. The assertion is equivalent to χ(FS′) = χBS′
(1) > χ(FS) = χBS

(1) where BS and BS′

are the discriminantal arrangements corresponding to the fibers FS and FS′ , respectively.
Since each arrangement has the same number of lines, it suffices to prove b2(BS′) > b2(BS).

We will establish a general statement, namely a strict inequality between the Betti num-
bers of two arrangements where one is a strict weak image of the other in the sense of matroid
theory. Let A = {H1, . . . ,Hn} and A′ = {H ′1, . . . ,H ′n} be two affine arrangements of lines in
C2 with n ≥ 3. We claim that b2(A) < b2(A

′) holds under the following two assumptions:

(i) If for I ⊆ [n] the lines {H ′i}i∈I meet in A′ then the lines {Hi}i∈I also meet in A,

(ii) The lines H1,H2,H3 intersect but the lines H ′1,H ′2,H ′3 do not intersect.

We prove this claim by induction on n. If n = 3 then the statement is trivial since (ii) forces
A′ to consist of three generic lines and A of three concurrent lines, so b2(A) = 2 < 3 = b2(A

′).
Now fix some n > 3. The deletion–restriction relation for the characteristic polynomial

(cf. [OT13, Corollary 2.57]) implies b2(A) = b2(A∖{Hn})+∣A
Hn ∣ where AHn is the restriction

ofA toHn. The analogous relation holds forA′. Since removing the last hyperplane preserves
both assumptions (i) and (ii), we have b2(A∖{Hn}) < b2(A

′∖{H ′n}) by induction. Moreover,
assumption (i) implies ∣AHn ∣ ≤ ∣A′H

′
n ∣. So in total this proves b2(A) < b2(A

′). ∎

Proof of Theorem 3.1.20. Note that ρ(X(3,m)) = 0 by definition. Let S be a stratum with
the property that nh(S) = 1 and all other are zero. Observe that the only S′ ⫋ X(3,m)
strictly containing S are the (hj) strata S′ with nj(S

′) = 1 and all others zero for j = 3, . . . h−1.



74 Particle physics and very affine varieties

If h = 3 then S is a codimension one stratum and is only strictly contained in X(3,m), so
Lemma 3.1.21 and formula (3.1.17) show that ρ(S) = 1. We now rewrite (3.1.17) via Lemma
3.1.21 as

(
h − 1

2
) = ρ(S) + (

h

3
) − (

h

4
) + . . . + (−1)h( h

h − 1
)

by induction on h. This shows that ρ(S) = (−1)h−1.
We prove part (b) by induction on σ(S). The base case σ(S) = 0 corresponds to the

stratum X(3,m), for which we know already that ρ(S) = 0. For the induction step, let
S ∈ S3,m be another stratum that is not one of those considered in part (a). For all strata
S′ ∈ PS ∖ {S} we have σ(S′) < σ(S) by Lemma 3.1.22. The induction hypothesis shows that
ρ(S′) = 0 for all strata that are not of the type of part (a). Thus, we have

σ(S) =
∞

∑
h=3
(
h − 1

2
) ⋅ nh(S) = ρ(S) +

∞

∑
h=3

Nh(S) ⋅ (−1)h−1,

where Nh(S) is the number of strata S′ ∈ PS ∖ {S} like those in part (a). This number is
given directly by Nh(S) = ∑

∞
k=3 nk(S) ⋅ (

k
h
). We conclude that

∞

∑
h=3
(
h−1

2
) ⋅ nh(S) = ρ(S) +

∞

∑
k=3

nk(S) ⋅
∞

∑
h=3
(−1)h−1

(
k

h
) = ρ(S) +

∞

∑
k=3

nk(S) ⋅ (
k−1

2
).

This implies ρ(S) = 0 for all strata S other than those in case (a). ∎

Equipped with Theorem 3.1.20, we can prove Theorem 3.1.17 with few calculations.

Proof of Theorem 3.1.17. We want to use the formula (3.1.15). By Theorem 3.1.20, we need
to consider only those strata S ∈ S3,m where nh(S) = 1 for a certain h and ni(S) = 0 for all
i ≠ h. The number of these strata in X(3,m) is 1

h!(
m
2 ) ⋅ (

m−2
2 ) . . . (

m−2h+2
2 ). Furthermore, all

these strata are combinatorially equivalent, so we write χ(3,m;h) for the Euler characteristic
of any of them. Using Theorem 3.1.20, we rewrite the formula (3.1.15) as follows:

χ(X(3,m + 1)) = χ(X(3,m)) ⋅ χ(FX(3,m)) +
∞

∑
h=3

(−1)h
h! (

m
2 ) ⋅ (

m−2
2 )⋯(

m−2h+2
2 ) ⋅ χ(3,m;h).

In particular, when m = 6,7 the formula becomes

χ(X(3,7)) = χ(X(3,6)) ⋅ χ(FX(3,6)) − 15 ⋅ χ(3,6; 3),
χ(X(3,8)) = χ(X(3,7)) ⋅ χ(FX(3,7)) − 105 ⋅ χ(3,7; 3).

The Euler characteristic χ(X(3,6)) = 26 is obtained in Example 3.1.3, whereas the bounded
chamber counts χ(FX(3,6)) = 42 and χ(FX(3,7)) = 101 are taken from Table 3.1. To compute
χ(3,m; 3), we note that the corresponding stratum in X(3,m) is isomorphic to a matroid
stratum of codimension 3 in X(3,m+1), obtained by requiring that the new point Pm+1 lies
on the three special lines. Those matroid strata have Euler characteristic χ(3,6; 3) = −12
for m = 6 and χ(3,7; 3) = −568. This is proved either geometrically, or by computer algebra.
Note that these strata are identified uniquely in Theorem 3.1.14, namely for m = 6 under
35[. . . ,12], and for m = 7 under 57[. . . ,568]. In conclusion, we can write χ(X(3,7)) =
26 ⋅ 42 + 15 ⋅ 12 = 1 272 and

χ(X(3,8)) = 1 272 ⋅ 101 + 105 ⋅ 568 = 188 112.
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If instead m = 8 the formula becomes

χ(X(3,9)) = χ(X(3,8)) ⋅ χ(FX(3,8)) − 420 ⋅ χ(3,8; 3) + 105 ⋅ χ(3,8; 4).

Table 3.1 shows that χ(FX(3,8)) = 205. The numbers χ(3,8; 3) = −81 040 and χ(3,8; 4) =
18 768 can be computed using HomotopyContinuation.jl [BT18] as the ML degrees of the
corresponding strata. Note that 18 768 appears in Theorem 3.1.14 as the ML degree of the
rank 3 matroid on 9 elements corresponding to four lines meeting in a point. The number
81 040 does not appear in this theorem. However, 81 040 = 99 808 − 18 768 where 99 808 is
the ML degree of the matroid on 9 elements where three lines meet in a point. Thus, the
contribution above stems from this matroid strata where one needs to remove the locus of
four concurrent lines. In conclusion, we have

χ(X(3,9)) = 188 112 ⋅ 205 + 420 ⋅ 81 040 + 105 ⋅ 18 768 = 74 570 400.

∎

As a proof of concept, we show how this story extends to nonuniform matroids.

Example 3.1.23. Let M be the matroid of rank 3 on 9 elements with one nonbasis 789.
The map X(M) → X(3,8) which forgets the ninth point is a surjection. The generic fiber
is no longer the complement of B(3,8), but rather its restriction to the line P7P8. That
restricted arrangement has 15 bounded regions. The nongeneric fiber over S(ij)(kl)(rs) has
14 bounded regions provided (78) ∈ {(ij), (kl), (rs)}, and 15 otherwise. There are 45 strata
of the form S(ij)(kl)(78). Similarly, the fiber over a stratum of four concurrent lines has 13
bounded regions provided P7P8 is one of those lines. There are 15 such codimension 2 strata.
This gives

χ(X(M)) = 188 112 ⋅ 15 + 45 ⋅ 81 040 + 15 ⋅ 18768 = 6 750 000,

as a decomposition of 6 750 000, verifying the entry 91[67500001] in Theorem 3.1.14.

3.1.5. Eight points in 3-space
We now turn to configurations in P3. For k = 4 and m ≤ 7, we can apply Grassmann

duality, which shows that X(4,m) = X(m − 4,m). Hence the ML degrees for few points in
P3 are

∣χ(X(4,6))∣ = ∣χ(X(2,6))∣ = 6 and χ(X(4,7)) = χ(X(3,7)) = 1 272.

This subsection is devoted to the 9-dimensional very affine variety X(4,8). Here is our
result:

Theorem* 3.1.24. The Euler characteristic of X(4,8) equals −5 211 816.

The number 5 211 816 is new. Unlike the ML degrees in Theorem 3.1.17, it did not yet
appear in the physics literature. Also, Lam’s finite field method [ABF+23, Appendix A] did
not yield this number. Thus far, the (4,8) case was out of reach for all available techniques,
in spite of the progress in [CUZ20, §6]. Our result proves the conjecture stated tacitly in
[CUZ20, Table 2].

Our derivation of Theorem* 3.1.24 rests on numerical computations with the software
HomotopyContinuation.jl [BT18]. However, the methodology is closely related to the topo-
logical approach seen in previous subsections. We exploit a specific likelihood degeneration,
i.e., the soft limits [CUZ20], to analyze X(4,8) in a similar way to Lemma 3.1.2
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We start by describing our computational setup. For each quadruple (i, j, k, ℓ), where
1 ≤ i < j < k < ℓ ≤ 8, let pijkℓ be the determinant of the corresponding 4 × 4 submatrix of

M4,8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 1 1 1
0 0 −1 0 1 x1 x2 x3
0 1 0 0 1 y1 y2 y3
−1 0 0 0 1 z1 z2 z3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.1.18)

Let I be the set of all such quadruples with k ≥ 4 and ℓ ≥ 6. We write (x, y, z) for the
nine variables appearing in (3.1.18). Note that X(4,8) is the complement of the union of
hypersurfaces H = ⋃(i,j,k,ℓ)∈I V (pijkℓ) ⊂ C9. This is a very affine variety in (C∗)62 with
parametrization C9 ∖H → (C∗)62 given by (x, y, z) ↦ (pijkℓ(x, y, z))(i,j,k,ℓ)∈I . By [Huh13,
Theorem 1], the quantity ∣χ(X(4,8))∣ is the number of critical points of the log-likelihood
function

L4,8(x, y, z) = ∑
(i,j,k,ℓ)∈I

uijkℓ ⋅ log(pijkℓ(x, y, z)).

Here we count critical points in C9/H, for generic data uijkℓ ∈ C. In other words, we seek the
number of solutions to the following system of 9 rational function equations in 9 unknowns:

∂L4,8

∂xi
=
∂L4,8

∂yi
=
∂L4,8

∂zi
= 0 for i = 1,2,3. (3.1.19)

In particle physics, these are the scattering equations for X(4,8) in the CEGM model
[CEGM19]. The projection of the likelihood correspondence [HS14, vdVS22] to the space of
data is a branched covering of degree ∣χ(X(4,8))∣. For generic complex numbers uijkℓ, the
fiber can be computed using the command monodromy_solve in HomotopyContinuation.jl,
as explained in [ST21, §3]. In principle, we can use the certify command [BRT20] to give
a proof of the inequality

∣χ(X(4,8))∣ ≥ 5 211 816.

In practice, we missed 218 solutions. In our run, the method quickly certified that 5 211 598
paths correspond to distinct true solutions, giving a proof that ∣χ(X(4,8))∣ ≥ 5 211 598.

The main idea in this subsection is to follow up this brute force monodromy computation
by a likelihood degeneration of (3.1.19) to study X(4,8) in a more structured way. In
particular, the degeneration will help us to decompose the number ∣χ(X(4,8))∣ into positive
summands, much like what we did in the Subsection 3.1.4. We keep assuming that the data
uijkℓ are generic.

We introduce a parameter t into the log-likelihood function L4,8 by setting

L̃4,8(x, y, z, t) = ∑
(i,j,k,ℓ)∈I

ℓ<8

uijkℓ ⋅ log(pijkℓ(x, y, z)) + ∑
(i,j,k,8)∈I

uijk8 ⋅ t ⋅ log(pijk8(x, y, z)). (3.1.20)

The limit for t→ 0 is the soft limit in [CUZ20]. Taking partial derivatives, we obtain rational
function equations in the unknowns x, y, z with coefficients in the rational function field C(t):

∂L̃4,8(x, y, z; t)
∂xi

=
∂L̃4,8(x, y, z; t)

∂yi
=
∂L̃4,8(x, y, z; t)

∂zi
= 0 for i = 1,2,3. (3.1.21)

There are ∣χ(X(4,8))∣ solutions (x̂(t), ŷ(t), ẑ(t)) over the field of Puiseux series K = C{{t}}.
We are interested in computing the valuations of the Plücker coordinates for these solutions.
In other words, suppose we knew these solutions, and suppose we were to substitute them
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into the 4 × 8 matrix (3.1.18). Each of its 4 × 4 minors is then a Puiseux series p̂●(t), and
we could consider the lowest order exponent of that series. This is the t-adic valuation of
p̂● = p̂●(t), denoted valt(p̂●). The result of this process would be the tropical Plücker vector

q̂ = (valt(pijkℓ(x̂(t), ŷ(t), ẑ(t)) ) )1≤i<j<k<ℓ≤8 ∈ Q70. (3.1.22)

Recall from (3.1.1) that X(4,8) is the quotient of Gr(4,8)○ by the action of the torus
(K∗)8. On the tropical side, where the vector q̂ lives, this corresponds to an additive action of
R8 on R70. We take the quotient of this additive action by setting to 0 the eight coordinates
not in I. Thus our choice of 62 coordinates is compatible with tropicalization [MS21a], and
we get trop(X(4,8)) as a 9-dimensional pointed fan in R62, with coordinates indexed by I.

Now, here is the punchline: we cannot compute solutions over K, and we have no access
to the Puiseux series in the argument of valt in (3.1.22). Instead, we carry out floating point
computations over R. This will give us enough information to identify the coordinates of q̂.
Indeed, from the point of view of complex geometry, the equations (3.1.21) define an affine
curve

C ⊂ X(4,8) ×C ⊂ (C∗)62
×C,

where the second factor is the line with coordinate t. The vectors q̂ in (3.1.22), which will be
called tropical critical points in Subsection 3.1.6, span the rays in the partial tropical curve

trop(C) ⊂ trop(X(4,8)) ×R≥0 ⊂ R62
×R≥0.

The solution q̂ = 0 represents classical solutions (x(t), y(t), z(t)) which, in the soft limit
t→ 0, converge in X(4,8). The corresponding ray in trop(C) is ρ0 = R≥0 ⋅ (0, . . . ,0,1).

Proposition 3.1.25. The ray ρ0 = R≥0 ⋅ (0, . . . ,0,1) has multiplicity 2 363 376 in trop(C).

Proof. The multiplicity of ρ0 is the number of classical solutions converging in X(4,8) for
t → 0. In this limit, the equations for i = 1,2 in (3.1.21) are the likelihood equations for
X(4,7). Plugging any solution of these equations into those for i = 3, we find, up to division
by t, the likelihood equations for the complement in C3 of the discriminantal arrangement
B(4,7). The ML degree of that arrangement complement is 1 858, as seen in Table 3.1. This
gives the formula χ(X(4,7)) ⋅ ∣χ(C3 ∖ B(4,8))∣ = 1 272 ⋅ 1 858 for the multiplicity of ρ0. ∎

The number 2 363 376 is the number of regular solutions in [CUZ20]. In the spirit of
Subsections 3.1.1 and 3.1.4, it is the contribution to χ(X(4,8)) coming from the dense
stratum in X(4,7). The nonzero tropical critical points q̂ correspond to the singular solutions
in [CUZ20]. For t → 0, these curves move to the boundary of X(4,8). The following result
verifies a conjecture in [CUZ20].

Theorem* 3.1.26. There are 3 150 distinct nonzero tropical critical points q̂. All of them
are given by {0,1}-vectors in R70 and they come in 7 combinatorial types, summarized in
Table 3.3.

We here assume that the uijkℓ are generic complex numbers. The result is derived by
computations with HomotopyContinuation.jl. The t-adic order of each numerical solution
was found using Algorithm 1. The nonzero tropical critical points q̂ span the rays in trop(C),
other than ρ0, whose generator has a positive last coordinate. The ML degree equals

∣χ(X(4,8))∣ = 2 363 376 + AI ⋅BI + AII ⋅BII + ⋯ + AVII ⋅BVII, (3.1.23)
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Type representative ((i, j, k, ℓ) for which valt(pijkℓ) = 1) # configurations
I (1,4,7,8),(2,5,7,8),(3,6,7,8) 105
II (1,2,3,8),(3,4,5,8),(5,6,1,8),(2,4,6,8) 210
III (1,2,3,8),(3,4,5,8),(5,6,7,8),(2,4,6,8) 1260
IV (1,4,7,8),(2,5,7,8),(3,6,7,8),(1,2,3,8),(4,5,6,8) 420
V (1,2,3,8),(1,4,5,8),(1,6,7,8),(2,4,6,8),(2,5,7,8) 630
VI (1,2,3,8),(1,4,5,8),(1,6,7,8),(2,4,6,8),(2,5,7,8),(3,4,7,8) 210
VII (1,2,3,8),(1,2,4,8),(1,2,5,8),(1,2,6,8),(1,2,7,8),(3,4,5,8),(3,6,7,8) 315

Table 3.3. Combinatorial types contributing singular solutions to (3.1.21). The
second column shows a representative for each type indicating which Plücker
coordinates have valuation 1. The third column shows the cardinality of the orbit of
the action of S7 on the first 7 indices.

where AI = 105 is the number of configurations of type I, BI is the multiplicity of each AI ray
in trop(C), and likewise for the other types. In other words, BI is the number of Puiseux
series solutions to (3.1.21) whose t-adic valuation is the representative of type I in Table 3.3.

We use numerical computation to obtain the multiplicities BI, . . . ,BVII. This is done
without any prior knowledge about trop(X(4,8)) or the fibration π4,8. Approximate so-
lutions of (3.1.19) are tracked numerically along the soft limit degeneration to learn the
tropical critical points (3.1.22). We explain the details of this computation in a more general
context in Subsection 3.1.7.

We filter the obtained list of candidate critical points by recording the regression error
in (3.1.34) and by checking that the solutions come in S7-orbits. This gives a total of 3 151
successfully found vectors q̂ in Q70. One of them is 0 ∈ R70. This establishes Theorem* 3.1.26.
To learn the multiplicities B● in (3.1.23), we record, for each tropical solution q̂ of type ●,
the number of classical solutions that were found to have valuation q̂. The multiplicities are

BI = 5 680, BII = 1 704, BIII = 988, BIV = 832,
BV = 308, BVI = 240, BVII = 72. (3.1.24)

Plugging these values into (3.1.23) leads to Theorem* 3.1.24. Additional strong support
arises from the fact that the number 5 211 816 is also the number of approximate solutions
found in a stand-alone run of monodromy_solve, although not all of them could be certified
via [BRT20].

Remark 3.1.27. The decomposition (3.1.23) is strongly related to the sum in Lemma
3.1.2. For instance, the formula χ(X(3,7)) = 26 ⋅ 42 + 15 ⋅ 12 from the proof of Theorem
3.1.17 partitions the 1 272 critical points of the log-likelihood function into 1 092 solutions
that converge in X(3,7) and 180 solutions that move to the boundary in the soft limit.
These boundary solutions escape from the open variety X(3,7) in 15 groups of 12. Here
AI = 15 is a combinatorial number, and BI = 12 is the ML degree of a stratum in X(3,6).
This is isomorphic to the codimension 3 matroid stratum in X(3,7) with ML degree 12
in Theorem 3.1.14. A similar interpretation holds for X(3,8) and X(3,9). In the case of
X(4,8), however, not all ray multiplicities B● are equal to the ML degree of a corresponding
stratum in X(4,7). A notable difference to the k = 3 case is that the matroid stratum of
type I, seen for k = 4,m = 8 in Table 3.3, differs in dimension from its corresponding stratum
in X(4,7).
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3.1.6. Statistical models and their tropicalization
We consider maximum likelihood estimation (MLE) for discrete statistical models [HS14,

PS05]. Our conventions and notation will be as in [ST21]. The given model is a d-dimensional
subvariety X of the projective space Pn, which is assumed to intersect the simplex ∆n ⊂ RPn

of positive points. We seek to compute the critical points on X of the log-likelihood function

Lu = u0 ⋅ log(p0) + u1 ⋅ log(p1) + ⋯ + un ⋅ log(pn) − (u0+u1+⋯+un) ⋅ log(p0+p1+⋯+pn).

For any positive constants u0, u1, . . . , un, representing data in statistics, this is a well-defined
function on ∆n. The aim of likelihood inference is to maximize Lu over all points p in the
model X ∩∆n. The number of all complex critical points, for generic u, is the ML degree
of the model X. If X is smooth then this equals the signed Euler characteristic of the open
variety X○, which is the complement of the divisor in X defined by p0p1⋯pn(∑

n
i=0 pi) = 0.

Likelihood degenerations were first introduced in the setting of algebraic statistics by
Gross and Rodriguez in [GR14], who studied the behavior of the MLE when some of the ui

approach zero. They distinguish between model zeros, structural zeros and sampling zeros.
These statistical concepts can serve as a guide for interpreting likelihood degenerations.

We draw samples independently from some unknown distribution that is in X ∩∆n. The
probabilities in the following definitions refer to that sampling distribution. The data are
summarized in a vector u ∈ Nn+1, where ui denotes the number of observations found to be
in state i. Suppose that state i was never observed in our sample. The entry ui = 0 is called:

• a structural zero if the probability of it being zero is equal to one;
• a sampling zero if the probability of it being zero is less than one;
• a model zero if the maximizer of Lu over X ∩∆n is a critical point of the restriction of
Lu to the hyperplane section X ∩ {pi = 0}.

Structural zeros may mean that the wrong model was chosen, so we exclude this possi-
bility. What remains is a consideration of sampling zeros and model zeros. These statistical
concepts led Huh and Sturmfels to propose the following formula in [HS14, Conjecture 3.19]:

MLdegree(X) = MLdegree(X ∩ {pj = 0}) + MLdegree(X ∣uj=0). (3.1.25)

The last summand counts critical points of Lu on X when uj = 0 and the other ui are generic.
The identity (3.1.25) holds under suitable smoothness and transversality assumptions. They
ensure that the ML degrees are signed Euler characteristics of very affine varieties, obtained
by removing the arrangement H = {p0p1⋯pn(∑

n
i=0 pi) = 0} of n+ 2 hyperplanes from Pn. For

the last summand we remove only n + 1 hyperplanes. The Euler characteristic is additive
relative to the additional hyperplane {pj = 0}. The sum becomes a minus for the signed
Euler characteristic, as the dimensions differ by one, so the identity (3.1.25) follows.

Familiar combinatorics arises when X is a linear space. In this case, X○ is the complement
of n + 1 hyperplanes in affine d-space. The number of bounded regions can be computed by
deletion-restriction. This is precisely the formula in (3.1.25). Moreover, all critical points are
real, and there is one critical point per bounded region. An example from [ST21] is the space
X =X(2,m) of m points on the line P1, modulo projective transformations. Here d =m− 3,
n =m(m − 3)/2, and the ML degree equals (m − 3)!. Formula (3.1.25) is essentially that for
soft limits in [CEGM19, CUZ20]. We count solutions in (3.1.25) as singular solutions plus
regular solutions.

In this subsection, we consider a vast generalization of soft limits, namely tropical de-
generations. We examine MLE for discrete statistical models through the lens of tropical
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geometry. In what follows, the real numbers R are replaced by the real Puiseux series
R = R{{t}}. This is a real closed field, and it comes with the t-adic valuation. The uni-
formizer t is positive and infinitesimal. A scalar u in R can be viewed as the germ of a
function u(t) near t→ 0.

We are now given u0, . . . , un ∈ R, with valuations wi = valt(ui). We call w = (w0, . . . ,wn)

the tropical data vector. Each critical point p̂ of Lu has its coordinates p̂i in the algebraic
closure K = C{{t}} of R. We set q̂i = valt(p̂i), and we refer to q̂ = (q̂0, . . . , q̂n) as a tropical
critical point. Given any model X, we would like to describe the multivalued map that takes
any tropical data vector w to the set of its tropical critical points q̂.

The following theorem accomplishes this goal for the class of linear models [PS05, §1.2].
We augment the homogeneous linear forms defining X by the equation p0 + p1 +⋯ + pn = 1,
and we identify X with the resulting d-dimensional affine-linear subspace in Rn+1. We write
X⊥ for the linear subspace of Rn+1 that consists of all vectors perpendicular to X, with
respect to the usual dot product. Thus X⊥ is a vector space of dimension n − d + 1 in Rn+1.

The tropical affine space trop(X) is a pointed cone of dimension d in Rn+1. Combina-
torially, this is the Bergman fan [MS21a, §4.2] of the rank d + 1 matroid on n + 2 elements
defined by X. Here the matroid is associated with the hyperplane arrangement X/X○. The
tropical linear space trop(X⊥) has dimension n−d+1. It is a fan with 1-dimensional lineality
space spanned by (1,1, . . . ,1). Combinatorially, it is the Bergman fan of the rank n − d + 1
matroid on n+1 elements defined by X⊥. Here the matroid of X⊥ is the dual of a one-element
contraction of the matroid of X. The contracted element corresponds to the hyperplane at
infinity, namely {p0 + p1 +⋯ + pn = 0}. It is very important to distinguish this element.

Theorem 3.1.28. If the tropical data vector w is sufficiently generic then there are exactly
MLdegree(X) many distinct tropical critical points. They are given by the intersection

q̂ ∈ trop(X) ∩ (w − trop(X⊥)). (3.1.26)

We call the subspace X general if both of the above matroids are uniform. In that case
we have MLdegree(X) = (nd); see [ST21, Example 4]. The matroid of X is the uniform
matroid Ud+1,n+2, and the matroid of X⊥ is the uniform matroid Un−d+1,n+1. We abbreviate
en+1 = −e0 − e1 − ⋯ − en, the negated sum of all unit vectors in Rn+1. The tropical affine
space trop(X) is the union of all (n+2

d
) cones pos(ei ∶ i ∈ I) where I runs over d-element

subsets of {0,1, . . . , n, n + 1}. The tropical linear space trop(X⊥) is the union of all (n+1
n−d
)

cones Ren+1 + pos(ej ∶ j ∈ J), where J runs over (n − d)-element subsets of {0,1, . . . , n}. Let
w ∈ Rn+1 and suppose w0 is its smallest coordinate. Then w+w0en+1 is a nonnegative vector
with first coordinate 0. Replacing w by w +w0en+1 does not change tropical critical points.

Corollary 3.1.29. If X is general then (3.1.26) consists of the (nd) points q̂ = ∑i∈I(wi −

w0) ei , where I runs over all d-element subsets of {1,2, . . . , n}. These are the tropical critical
points.

Proof. By construction, the vector q̂ lies in trop(X). We also have

w − q̂ = w −∑
i∈I

wiei +∑
i∈I

w0ei = ∑
j/∈I

(wj −w0)ej −w0en+1.

This vector is visibly in trop(X⊥). We have thus constructed (nd) distinct vectors in the
intersection (3.1.26). The corollary hence follows from Theorem 3.1.28, applied to general X.

∎
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Example 3.1.30 (n = 3, d = 2). We consider the 2-parameter linear model X for the state
space {A,C,G,T} discussed in [PS05, Example 11]. This model is defined by one homogeneous
linear constraint cApA + cCpC + cGpG + cTpT = 0. Its coefficients ci are nonzero real numbers.
Consider the data vector u = (twA , twC , twG , twT). The four exponents are nonnegative integers,
and we assume that wA is the smallest among them. The log-likelihood function has three
critical points p̂ = (p̂A, p̂C, p̂G, p̂T), one for each bounded polygon. These are functions in t,
and we seek their behavior for t→ 0. This is given by the three tropical critical points:

q̂ = (0,wC −wA,wG −wA,0), (0,wC −wA,0,wT −wA) or (0,0,wG −wA,wT −wA).

We change the model by setting cA = 0, so X is no longer general. The number of bounded
regions drops from 3 to 2. The matroid of X changes, and so does trop(X). We now find
q̂ = (0,wC −wA,wC −wA,wG −wA)or (0,wC −wA,wG −wA,wC −wA) provided wC <min(wG,wT).

Proof of Theorem 3.1.28. We use the formulation of the likelihood correspondence given in
[HS14, Proposition 1.19]. This states, in our notation, that the critical points p̂ are the
elements of

X ∩ (u−1
⋆X⊥)−1. (3.1.27)

Here, ⋆ is the Hadamard product, and u−1 is the coordinatewise reciprocal of the vector u.
The intersection in (3.1.27) commutes with tropicalization, provided w = valt(u) is generic:

trop(X ∩ (u−1
⋆X⊥)−1

) = trop(X)∩ −trop(u−1
⋆X⊥) = trop(X)∩ (w−trop(X⊥)). (3.1.28)

Indeed, the left expression is contained in the middle expression, and they are equal in the
sense of stable intersection. This is the content of [MS21a, Theorem 3.6.1]. In (3.1.28) we
intersect polyhedral spaces of dimensions d and n + 1 − d in Rn+1. The second equation
follows from [MS21a, Proposition 5.5.11]. Since w is generic, the intersection is transverse
at any intersection point and each intersection point is isolated. Lemma 3.1.31 below shows
that the multiplicity of every tropical intersection is 1, even in the more general case of a
nonrealizable matroid. ∎

Fix a matroid X of rank d+1 on the elements {0,1, . . . , n+1}. Let X⊥ = (X/(n+1))∗ be
the dual of the contraction of X by the element n + 1. Furthermore, let F ∶= {F1 ⊊ ⋅ ⋅ ⋅ ⊊ Fd}

and F⊥ ∶= {F ⊥1 ⊊ ⋅ ⋅ ⋅ ⊊ F ⊥n−d} be flags of flats of X and X⊥, respectively with rank(Fi) = i and
rank(F ⊥j ) = j for all i, j. Since X has rank d + 1, we can assume Fd ⊆ {0, . . . , n}.

Lemma 3.1.31. Each intersection in (3.1.28) has multiplicity 1. It is the signed determinant
of an (n + 1) × (n + 1) matrix whose columns are indicator vectors of flats in flags as above:

MF ,F⊥ ∶=
⎛
⎜
⎝

. . . . . .
eF1 . . . eFd

eF ⊥1
. . . eF ⊥

n−d
e{0,...,n}

. . . . . .

⎞
⎟
⎠
.

Such a matrix MF ,F⊥ has determinant 0 or ±1. Moreover, if MF ,F⊥ is invertible, there exist
complementary bases of the matroids X/(n + 1) and X⊥ generating the flags F and F⊥.

Proof. We proceed along the following four steps.
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(i) We can assume that {0, . . . , d − 1, n + 1} is a basis of X, and

MF ,F⊥ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1
0 1 1 1
0 0 ⋱ 1
0 0 0 1

∗

∗ ∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.1.29)

where the left block has d columns and the symbols ‘∗’ represent arbitrary {0,1}-entries.
The definition of flag ensures that within each column block, a 1-entry is followed by
only 1’s in the same row. Therefore, rows in each column block are uniquely determined
by their number of 1-entries.

(ii) Let Ij be the set of row indices corresponding to rows having precisely j 1-entries in
the left block. For each row index i, let γ(i) be the smallest column index in the right
block such that the entry (i, γ(i)) is 1. By permuting rows of MF ,F⊥ we can ensure
that all rows indexed by Ij are sorted by increasing number of 1’s in the right block.
Since a 1-entry in the right block is followed by 1’s in the same row, we have that

if i, i′ ∈ Ij are such that i′ < i, then γ(i) ≤ γ(i′). (3.1.30)

If equality holds for some i ∈ Ij ∖ {i
′}, then two rows are equal and MF ,F⊥ has deter-

minant 0, in which case we are done. Hence, in what follows we assume that the last
inequality in (3.1.30) is strict for all distinct i, i′ ∈ Ij .

(iii) We perform the following elementary row operations. Each row ri indexed by i > d is
replaced by ri − ri′ , where i ∈ Ii′ . After this operation, the lower left block in MF ,F⊥ is
zero, all entries are still 0 or 1 and the function γ is unchanged.

(iv) It remains to show that the determinant of the lower right block matrix is ±1. Since
the matrix MF ,F⊥ is still of the form (3.1.29), the elements {0, . . . , d− 1, n+ 1} are still
a basis of X (after the above permutations). Therefore by definition of X⊥, the set
{d, . . . , n} is a basis of X⊥. This implies that, up to a permutation of rows, the lower
right block is an upper triagonal matrix with 1-entries on the diagonal. ∎

We now apply Theorem 3.1.28 to the CHY model X○ =X(2,m), where n =m(m − 3)/2.
The tropical linear space trop(X) consists of ultrametrics on m − 1 points [MS21a, Lemma
4.3.9]. The matroid of X is the graphic matroid of the complete graph Km−1; see [MS21a,
Example 4.2.14]. Using (3.1.2) with k = 2, the vertices of Km−1 are labeled by 2,3, . . . ,m.
The special edge e = {2,3} corresponds to the hyperplane at infinity. The matroid of X⊥ is
the cographic matroid of the graph Km−1/e obtained by contracting e. This is dual to the
graphic matroid of Km−1/e. Vectors in trop(X) have the minimum attained twice on every
circuit of Km−1, where the edge e has weight 0. Vectors in trop(X⊥) attain their minimum
twice on every cocircuit of Km−1/e. Thus tropical MLE amounts to writing the vector w
as a sum of two such minimum-attained-twice vectors. The number of such decompositions
equals (m − 3)!.

Example 3.1.32 (m = 6). Following [ST21, Example 2], we consider the CHY model
X(2,6). This corresponds to an arrangement of 9 planes in R3, with six bounded regions,
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namely the tetrahedron of a triangulated 3-cube. We coordinatize this model by the matrix
(3.1.2), so that e = {2,3} is the special edge of K5. Our data are the Mandelstam invariants

u24 = t
12, u25 = t

6, u26 = t
9, u34 = t

12, u35 = t
5, u36 = t, u45 = t

10, u46 = t
11, u56 = t

3.

Hence the tropical data vector equals w = (w24,w25, . . . ,w45) = (12,6,9,12,5,1,10,11,3).
Our task is to find all additive decompositions w = q̂ + (w− q̂) where the two summands lie
in the respective Bergman fans trop(X) and trop(X⊥). One such decomposition equals

w = q̂ + (w − q̂) = (7,5,2,0,0,0,5,2,2) + (5,1,7,12,5,1,5,9,1). (3.1.31)

This solution is verified in Figure 3.5: the minimum over each circuit is attained at least
twice.

Figure 3.5. Contracting the edge 23 in the green graph K5 yields a planar graph
whose dual is the blue graph on the right. The orange edge weights are the entries in
(3.1.31). The key property is that the minimum is attained at least twice in each cycle
of the respective graph.

The intersection (3.1.26) consists of six points. The tropical critical points q̂ are

(0,0,8,4,2,0,2,0,0) , (0,5,2,2,0,0,0,0,2) , (1,0,8,0,2,0,0,1,0) ,
(2,5,2,0,0,0,2,3,2) , (7,5,2,0,0,0,5,2,2) , (9,0,8,0,2,0,0,8,0).

Each q̂ gives a decomposition as in (3.1.31), where the two summands are compatible with
the cycles of the two graphs in Figure 3.5. These solutions specify small arcs that lie in
the six tetrahedra. These arcs converge for t → 0 with the given rates to vertices of the
arrangement.

What we have outlined here is the combinatorial theory of tropical CHY scattering. This
works for all m ≥ 5. The soft limits of [CUZ20] arise as the very special case when the
tropical Mandelstam invariants w satisfy wim = 1 and wij = 0 for i ≤ j ≤ m − 1. The key
player in tropical CHY scattering is the space trop(X) of ultrametric phylogenetic trees. In
the case m = 5, this space is a cone over the Petersen graph. See [MS21a, §4.3] for details.

In this subsection we presented the theory of tropical MLE for linear models. A more
general combinatorial version of Theorem 3.1.28 has been recently proved in [AMEP22]. At
this point, it is natural to ask what happens when the model X is an arbitrary (nonlinear)
projective variety in Pn. A partial answer based on homotopy techniques is given in the next
subsection. The role of (3.1.27) is now played by the likelihood correspondence. According to
[HS14, Theorem 1.6], this is an n-dimensional subvariety in Pn ×Pn. An ambitious goal is to
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determine the tropicalization of that subvariety. The desired pairs (w, q̂) are points in that
tropical likelihood correspondence. This leads to very interesting geometry and combinatorics.
For instance, it is closely related to the Bernstein-Sato slopes studied by van der Veer and
Sattelberger [vdVS22].

3.1.7. Learning valuations numerically
The previous subsections developed two techniques for obtaining the ML degree of a very

affine variety: Euler characteristics via stratified fibrations, and tropical geometry. Each
method leads to a meaningful combinatorial description of the ML degree, but it requires
significant combinatorial efforts. In this subsection we propose a numerical method which
computes the tropical solutions q̂ discussed in Subsections 3.1.5 and 3.1.6 directly, while
avoiding any combinatorial overhead. A decomposition of the ML degree as a positive sum
of integers naturally emerges as a byproduct. We used this method to verify the multiplicities
(3.1.24) as detailed in Subsection 3.1.5.

Let K = C{{t}} and consider a very affine variety X ⊂ (K∗)n that is defined over C.
Fix a data vector u ∈ Kn. The problem of tropical MLE is to compute the coordinate-wise
valuations q̂ = valt(p̂) of the critical points p̂ of the log-likelihood function Lu restricted to X.
Note that each q̂ is a vector in Qn, so the output can be written in exact arithmetic.

In this subsection, we think of t as a coordinate for C∗. We assume for simplicity that
u ∈ C[t, t−1]n is given by Laurent polynomials. The following incidence variety is a curve:

C = {(p̂, t) ∈X ×C∗ ∣ p̂ is a critical point of (Lu(t))∣X
},

The generalization to the case where the ui are Laurent series, convergent in the punctured
disk {t ∈ C∗ ∣ ∣t∣ < 1}, is straightforward. We assume that u is sufficiently generic, so that:

• the projection map πC∗ ∶ C → C∗ is an MLdegree(X)-to-one branched covering,

• the half-open real line segment (0,1] ⊂ C∗ avoids the branch locus of πC∗ .

Any point (p̂(1),1) of the curve C lies on a unique path in π−1
C∗((0,1]) which corresponds

to a critical point p̂(t) = (p̂1(t), . . . , p̂n(t)) ∈K
n. Each coordinate of p̂(t) is a Puiseux series

p̂i(t) = cit
q̂i + higher order terms, (3.1.32)

where q̂ = (q̂1, . . . , q̂n) is its corresponding tropical critical point.
For any real constant t′ ∈ (0,1] with t′ ≪ 1, the following approximation holds:

log ∣ p̂i(t
′
) ∣ ≈ log ∣ci∣ + q̂i ⋅ log t′. (3.1.33)

Hence, for all values of t′ that are small enough, the points (at′ , bt′) = (log t′, log ∣ p̂i(t
′) ∣) ∈ R2

lie approximately on a line with slope q̂i = valt(p̂i(t)). We wish to learn that slope.
Using standard numerical predictor-corrector techniques on the critical point equations,

one can compute (p̂(t′), t′) ∈ π−1
C∗(t

′) for any t′ ∈ (0,1]. This amounts to evaluating the
solution p̂(t) at t′. We used HomotopyContinuation.jl for this computation.

By evaluating p̂(t) at many t′ near 0, we may approximate the ith coordinate q̂i by fitting
a line through the points (at′ , bt′), see (3.1.33). We find q̂ by doing this for i = 1,2, . . . , n.
This discussion is summarized in Algorithm 1 for computing the tropical critical point q̂.
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Algorithm 1: Numerical computation of tropical critical points
Input: Data u and a critical point p̂(1) ∈ (C∗)n of the log-likelihood function Lu(1).
Output: The tropical critical point q̂ associated to the solution p̂(t), together with

some measure ρ of trust in this result.
1 With p̂(1) as the start solution, use numerical predictor-corrector techniques to

compute p̂(t′) for a finite set T ⊂ (0,1] of values t′, all sufficiently close to 0.
2 Fit lines ℓi through the data points {(log t, log ∣p̂i(t)∣) ∣ t ∈ T} for each coordinate p̂i,

using standard regression techniques.
3 Using any rationalization heuristic, such as the built-in function rationalize in

Julia, round the slope of the line ℓi to obtain the rational number q̂i.
4 As a measure of trust, record the regression error

ρ ∶= ∑
t′∈T

(log ∣p̂i(t
′
)∣ − (log ∣ci∣ + q̂i ⋅ log t′))2. (3.1.34)

5 return (q̂, ρ)

Example 3.1.33 (Soft limits). We apply this to the CEGM modelX(3,7). It is parametrized
by the 3×3 minors pijk of the matrix M3,7 given in (3.1.2). Consider the log-likelihood func-
tion

Lu(t) = L̃3,7(x, t) = ∑
1≤i<j<k≤6

uijk ⋅ log pijk + ∑
1≤i<j≤6

t ⋅ uij7 ⋅ log pij7 (3.1.35)

for generic complex parameters uijk. The numerical computation in [ST21, §4] provides 1 272
start solutions p̂(1). Each of these now serves as the input to Algorithm 1. That algorithm
performs the likelihood degeneration (soft limit) purely numerically for t→ 0.

The 1 272 runs of Algorithm 1 lead to only 16 distinct tropical critical points q̂. This
means that different start solutions p̂(1) yield the same output. The multiplicity of q̂ in
the tropical curve trop(C) is the number of runs that yield output q̂. The coordinates and
multiplicities of all tropical critical points are shown in the columns of Table 3.4. We stress
that this table was computed blindly, without any prior knowledge about the model X(3,7).

Remarkably, one learns the geometry of the stratified fibration π3,7 from the output in
Table 3.4. The first column corresponds to the 1 092 regular solutions, i.e., those which
converge in X(3,7). The others correspond to 15 groups of 12 boundary solutions, whose
limit for t → 0 lies on the boundary in the tropical compactification of X(3,7). Thus, by
using Algorithm 1, we discover the ML degrees in Theorem 3.1.17 in a purely automatic
manner.

Recall that the action of (C∗)7 on the Plücker coordinates tropicalizes to an additive
action of R7 on R35. Modulo this R7-action, each column of Table 3.4, except the first one,
can be represented by a {0,1} vector that has precisely three nonzero entries. For instance,
the second column has its entries 1 in the rows p137, p267, p457, so it identifies the divisor
S(13),(26),(45) in the stratification of X(3,6). This corresponds to a codimension 3 matroid
stratum for k = 3,m = 7. In this manner, one automatically learns the 15 strata of type I
in Table 3.2. On average, the regression error (3.1.34) for all 1 272 paths was ∼ 0.0045, the
largest one being ∼ 0.162. The computation took no more than a couple of minutes.

Extending Example 3.1.33 to a more challenging scenario, we applied Algorithm 1 to
each of the 5 211 816 solutions to the maximum likelihood equations (3.1.19) for k = 4,m = 8.
This led us to the multiplicities (3.1.24) and the derivation of Theorem* 3.1.26 as discussed
in Subsection 3.1.5.
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p123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p137 0 1 0 0 -1 0 1 0 1 0 0 0 0 -1 0 -1
p145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p146 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p147 0 0 0 1 -1 1 0 0 0 0 0 0 0 -1 1 -1
p156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p157 0 0 0 0 -1 0 0 1 0 0 1 1 0 -1 0 -1
p167 0 0 1 0 -1 0 0 0 0 1 0 0 1 -1 0 -1
p234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p237 0 0 0 0 -1 0 0 0 0 1 0 1 0 -1 1 -1
p245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p247 0 0 0 0 -1 0 0 1 1 0 0 0 1 -1 0 -1
p256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p257 0 0 1 0 -1 1 1 0 0 0 0 0 0 -1 0 -1
p267 0 1 0 1 -1 0 0 0 0 0 1 0 0 -1 0 -1
p345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p347 0 0 1 0 -1 0 0 0 0 0 1 0 0 -1 0 0
p356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p357 0 0 0 1 -1 0 0 0 0 0 0 0 1 0 0 -1
p367 0 0 0 0 0 1 0 1 0 0 0 0 0 -1 0 -1
p456 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p457 0 1 0 0 0 0 0 0 0 1 0 0 0 -1 0 -1
p467 0 0 0 0 -1 0 1 0 0 0 0 1 0 0 0 -1
p567 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 1 0
mq̂ 1 092 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Table 3.4. Columns represent the 16 numerically obtained tropical critical points of
the log-likelihood function in the soft limit for X(3,7). The last row represents their
multiplicities.

3.2. Hypersurface complements
As stated at the beginning of this chapter, this section studies vector spaces of generalized

Euler integrals. These are integrals of the form

∫Γ
fs+a xν+b dx

x
= ∫Γ

⎛

⎝

ℓ

∏
j=1

f
sj+aj

j

⎞

⎠
⋅ (

n

∏
i=1
xνi+bi

i )
dx1
x1
∧⋯ ∧

dxn

xn
. (3.2.1)

For the sake of clarity, recall that x = (x1, . . . , xn) are coordinates on (C∗)n, f = (f1, . . . , fℓ)

denotes a tuple of ℓ Laurent polynomials in x, and we use multi-index notation, i.e., fs

denotes fs1
1 ⋯f

sℓ

ℓ , and similarly for xν . The choice of the integration contour will be made
precise in Subsection 3.2.1. The exponents νi, sj take on complex values, whereas ai, bj ∈ Z
are thought of as integer shifts. Our motivation for studying generalized Euler integral comes
from particle physics, where they arise as Feynman integrals in the Lee–Pomeransky repre-
sentation (see Appendix A). These are evaluated to make predictions for particle scattering
experiments [Wei22].

It well known in the physics literature that, when (3.2.1) represents a Feynman integral,
varying the integer vectors a, b in (3.2.1) gives Feynman integrals for different space-time
dimensions, which are known to satisfy linear relations. In fact, there exists a finite set
{(a(k), b(k))}k=1,...,χ ⊂ Zℓ× Zn such that any integral of the form (3.0.2) can be written as a
linear combination of the corresponding χ Euler integrals.

This discussion hints at the fact that the integrals (3.2.1), for varying (a, b) ∈ Zℓ×Zn, gen-
erate a finite-dimensional vector space. We present two ways of formalizing this statement.
We start with a homological interpretation. Let sj ∈ C, νi ∈ C be fixed, generic complex
numbers and f ∈ C[x,x−1]ℓ fixed, nonzero Laurent polynomials such that none of the fj is
a multiplicative unit in C[x,x−1]. The complement of the vanishing locus of their product
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f1⋯fℓ in the algebraic torus (C∗)n defines the very affine variety

X = {x ∈ (C∗)n ∣ f1(x)⋯fℓ(x) ≠ 0} = (C∗)n ∖ V (f1⋯fℓ) ⊂ (C∗)n. (3.2.2)

The variety X fits into the framework of very affine varieties because the graph embedding

X ↪ (C∗)ℓ × (C∗)n, x↦ (f1(x), . . . , fℓ(x), x1, . . . , xn)

is a closed embedding that identifies X with the smooth closed subvariety

U = {(y, x) ∈ (C∗)ℓ+n
∣ yj = fj(x) for j = 1, . . . , ℓ} ⊂ (C∗)ℓ+n.

Regular functions on X are precisely elements of C[x±1, f−1
1 , . . . , f−1

ℓ ]. We are interested in
the twisted homology of X, where the twist is defined by the logarithmic differential 1-form

ω ∶= dlog(fsxν
) =

ℓ

∑
j=1

sj ⋅ dlog (fj) +
n

∑
i=1
νi ⋅ dlog (xi) ∈ Ω1

X(X). (3.2.3)

For each (a, b) ∈ Zℓ × Zn, the integral (3.2.1) defines a linear map on the space of n-cycles.
We define the C-vector space

VΓ ∶= SpanC { [Γ]z→ ∫Γ
fs+a xν+b dx

x
}
(a,b) ∈Zℓ×Zn

⊆ HomC(Hn(X,ω) , C ). (3.2.4)

Here, Hn(X,ω) is the n-th homology of the twisted chain complex associated to ω [AKKI11,
Chapter 2]. We recall the definition in Subsection 3.2.1. Another way to obtain a vector space
by varying (a, b) ∈ Zℓ × Zn is to view (3.2.1) as a function of s and ν. We fix an integration
contour Γ ∈Hn(X,ω) and also keep f ∈ C[x,x−1]ℓ fixed. We obtain the C(s, ν)-vector space

Vs,ν ∶= SpanC(s,ν) {(s, ν)z→ ∫Γ
f s+a xν+b dx

x
}
(a,b) ∈Zℓ×Zn

. (3.2.5)

The cycle Γ depends on (s, ν), as we will clarify in Subsection 3.2.2. The vector spaces VΓ
and Vs,ν , as well as the relations between their generators, are connected in an intriguing
way. This is explored in the rest of the chapter. In the context of Feynman integrals, the
vector space VΓ was studied by Mizera and Mastrolia in [Miz18, MM19], and Vs,ν for the case
of a single polynomial f is the central object in the article [BBKP19] by Bitoun, Bogner,
Klausen, and Panzer. Variations of Vs,ν , in which the Feynman integral depends on some
extra physical parameters, appear in [BGL+18].

The motivation in [GKZ90] for studying generalized Euler integrals comes from the theory
of GKZ systems. It turns out that (3.2.1) gives a natural description of the stalk Vc∗ of
the solution sheaf of a certain system of linear PDEs at the point c∗. We set a = b = 0
and fix generic complex values for the parameters s ∈ Cℓ, ν ∈ Cn. We now think of (3.2.1)
as a function of the coefficients of the fj and generate a C-vector space by varying the
integration contour Γ:

Vc∗ ∶= SpanC { c z→ ∫Γ
f(x; c)s xν dx

x
}
[Γ]∈Hn(X,ω)

, (3.2.6)

where c lies in a small neighborhood of c∗ and two functions are identified when they agree
on a neighborhood of c∗. The space X depends on c∗, as we explain in Subsection 3.2.3.

Here, the monomial supports of the Laurent polynomials fj are fixed, and their coeffi-
cients are listed in a vector c ∈ CA of complex parameters. The notation CA indicates that
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the entries of c are indexed by a set of exponents A ⊂ Zn. The vector space Vc∗ is a subspace
of the hypergeometric functions on CA. It consists of local solutions to a GKZ system, which
is a DA-ideal later denoted by HA(κ) with κ = (−ν, s). Here DA is the Weyl algebra whose
variables are indexed by A. We recall definitions and notation in Subsections 3.2.2 and 3.2.3.
A classical result by Cauchy, Kovalevskaya, and Kashiwara in D-module theory (see Theo-
rem 1.2.9) relates the dimension of Vc∗ to that of the C(c)-vector space RA/(RA ⋅HA(κ)),
which is the quotient of the rational Weyl algebra RA by the RA-ideal generated by the GKZ
system. The connection between Vc∗ and VΓ is investigated in the works of Matsubara-Heo
[MH22, MH21] in a more general setup. In the recent article [CGM+22], the authors present
a fast algorithm to compute Macaulay matrices to efficiently derive Pfaffian systems of GKZ
systems.

Fixing generic parameters in each context, all vector spaces seen above share the same
dimension. Moreover, this dimension is governed by the topology of X in (3.2.2).

Theorem 3.2.1. Let X ⊂ (C∗)n be the very affine variety (3.2.2), where fj are Laurent
polynomials with fixed monomial supports and generic coefficients. Let VΓ, Vs,ν , Vc∗ ,HA(κ)
be as defined above, with generic choices of parameters each. We have

dimC (VΓ) = dimC(s,ν) (Vs,ν) = dimC (Vc∗) = dimC(c) (RA/(RA ⋅HA(κ))) = (−1)n ⋅ χ(X),

where χ(X) denotes the topological Euler characteristic of X.

Although the statement of Theorem 3.2.1 in the case of Vs,ν appears in the literature
only for ℓ = 1, the rest of its content summarizes known results. Other than allowing ℓ > 1 for
the vector space Vs,ν , we also consider it part of our contribution to bring together scattered
results in the literature on this important topic, leading to an accessible, complete proof of
Theorem 3.2.1. The following subsections study in detail the three vector spaces of integrals
introduced above. Finally, Theorem 3.2.1 follows as a corollary of Theorems 3.2.7, 3.2.23,
and 3.2.28, which state the result in different contexts.

3.2.1. Twisted de Rham cohomology

Throughout this subsection, s ∈ Cℓ, ν ∈ Cn, and f ∈ C[x,x−1]ℓ are fixed. None of the fj

are zero or a unit in C[x,x−1]. We focus on the C-vector space

VΓ = SpanC { [Γ]z→ ∫Γ
fs+a xν+b dx

x
}
(a,b) ∈Zℓ×Zn

(3.2.7)

previously introduced. In particular, we are interested in interpreting its dimension as that
of a (co-)homology vector space. We denote by Ia,b(Γ) the integral in (3.2.1) to stress the
dependence on the integer shifts (a, b) ∈ Zℓ× Zn and on the integration contour Γ in this
context. This subsection views Ia,b(Γ) as the pairing between the twisted cycle Γ and the
co-cycle faxb dx

x . We now introduce the relevant (co-)chain complexes, and refer to [AKKI11]
for more details.

Let X be the very affine variety defined in (3.2.2). We start by briefly discussing twisted
chains, and later switch to co-chains. Since the parameters sj and νi are complex numbers,
fsxν = fs1

1 ⋯f
sℓ

ℓ x
ν1
1 ⋯x

νn
n is a multi-valued function on X. To compute our integral (3.2.1),

a branch of this function needs to be specified. A twisted chain Γ in (3.2.7) comes with
this information: it belongs to the twisted chain group Cn(X,L

∨
ω), defined as follows. Let

L∨ω be the line bundle on X whose sections are local solutions ϕ to the differential equation
dϕ−ω ∧ϕ = 0. Here ω is the differential form in (3.2.3). One checks that these local sections
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are C-linear combinations of branches of f sxν (see Example 3.2.2). For k = 0, . . . ,2n, we
define the k-dimensional twisted chain group Ck(X,L

∨
ω) as the C-vector space spanned by

elements of the form ∆ ⊗C ϕ, where ∆ ∈ Ck(X) is a singular chain of dimension k on X,
and ϕ ∈ L∨ω(U∆) is a local section of L∨ω on an open neighborhood U∆ of ∆. Two such
sections are identified if they coincide on some open neighborhood. The tensor sign indicates
bilinearity of Ck(X) ×L

∨
ω → Ck(X,L

∨
ω) in this construction. The twisted boundary operator

∂ω ∶ Ck(X,L
∨
ω) → Ck−1(X,L

∨
ω) naturally remembers the choice of branch: ∂ω(∆ ⊗C ϕ) =

∂∆ ⊗C ϕ, where ∂ ∶ Ck(X) → Ck−1(X) is the usual boundary operator. An element in
Ck(X,L

∨
ω) ∩ ker(∂ω) is called a k-cycle. We obtain the following chain complex:

(C●(X,L
∨
ω), ∂ω) ∶ 0Ð→ C2n(X,L

∨
ω)

∂ω
Ð→ C2n−1(X,L

∨
ω)

∂ω
Ð→ ⋯

∂ω
Ð→ C0(X,L

∨
ω)Ð→ 0.

Its homology vector spaces are

Hk(X,L
∨
ω) ∶= ker(Ck(X,L

∨
ω)

∂ω
Ð→ Ck−1(X,L

∨
ω)) / im(Ck+1(X,L

∨
ω)

∂ω
Ð→ Ck(X,L

∨
ω)).

To simplify the notation, we will write Hk(X,ω) ∶=Hk(X,L
∨
ω) in what follows. As indicated

in (3.2.4), the class [Γ] in (3.2.7) lives in the n-th homology vector space Hn(X,ω). Before
proceeding with co-chain complexes, we work out an example.

Example 3.2.2 (ℓ = 2, n = 1). Let f = (x − 1, x − 2) ∈ C[x,x−1]2, s = (1
2 ,

1
2) and ν = 1

2 . The
very affine variety X is P1 ∖ {0,1,2,∞}. Let C be the elliptic curve given by

{y2z − x(x − z)(x − 2z) = 0} ⊂ P2.

There is a double covering C ∖ {4 points} → X whose sheets represent the branches of the
multi-valued function f sxν =

√
x(x − 1)(x − 2). These are the solutions to the differential

equation (d − ω)ϕ = 0, where

ω = (
1

2(x − 1)
+

1
2(x − 2)

+
1

2x
)dx. (3.2.8)

It is instructive to think of twisted 1-cycles on X as projections of singular cycles on
C ∖ {4 points}. This is illustrated in Figure 3.6. We view the elliptic curve C as two copies of
P1, glued along the branch cuts between 0,1 and 2,∞, drawn in black. The green loops in the
left part of the figure lift to the standard basis of the first homology of C, seen on the right.
See for instance [Bob11, Section 1.3.3, p. 27]. The dotted part of the cycle encircling 1, 2 lies
on a different branch of the covering. The small red loop, even though it is a singular cycle
on X, does not lift to a closed loop on C. Hence, to obtain a twisted cycle, this loop needs to
be run through twice. The reader who is unfamiliar with twisted cycles might appreciate the
discussion in Subsection 3.2.4, where we discuss numerical evaluation of Ia,b(Γ) when n = 1.

Figure 3.6. Twisted cycles in P1 ∖ {0,1,2,∞} are singular cycles on an elliptic curve.
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One then sets up the twisted de Rham complex dual to the chain complex C●(X,L
∨
ω).

This uses the vector spaces Ak(X) of smooth k-forms on X. The co-chain complex is

(A
●
(X),∇ω) ∶ 0 Ð→ A0

(X)
∇ω
Ð→ A

1
(X)

∇ω
Ð→ A

2
(X)

∇ω
Ð→ ⋯

∇ω
Ð→ A

n
(X)

∇ω
Ð→ 0. (3.2.9)

The twisted differential is defined as ∇ω ∶= d + ω ∧ . That is,

∇ω ∶ A
k
(X) → Ak+1

(X), ϕ ↦ dϕ + ω ∧ ϕ.

Note that ω ∈ A1(X) is indeed a smooth 1-form on X. For this complex, the cohomology
vector spaces are given by

Hk
dR(X,ω) ∶= H

k
(A
●
(X),∇ω) = ker (Ak

(X)
∇ω
Ð→ A

k+1
(X)) / im (Ak−1

(X)
∇ω
Ð→ A

k
(X)).

By [AKKI11, Lemma 2.9(1)], there is a perfect pairing between twisted homology and coho-
mology, justifying our claim that the complexes are dual. For k = n, this is given by

⟨ ⋅ , ⋅ ⟩∶ Hn
dR(X,ω) ×Hn(X,ω)Ð→ C, ([ϕ], [Γ])↦ ⟨[ϕ], [Γ]⟩ ∶= ∫Γ

f s xν ϕ. (3.2.10)

This also shows, since [faxb dx
x ] ∈H

n
dR(X,ω), that Ia,b ∶ [Γ]→ Ia,b(Γ) in (3.2.7) are elements

in HomC(Hn(X,ω),C). This is the inclusion (3.2.4), which we will show to be an equality.
A drawback of the twisted de Rham complex (3.2.9) is that its vector spaces Ak(X) are

not amenable to computations. This is why one uses a twisted algebraic de Rham complex
for X, whose vector spaces have more explicit descriptions. Moreover, we will see that this
complex has the same cohomology spaces as (A●(X),∇ω). We use the vector spaces Ωk

X(X)
of regular k-forms on X. An element of Ω0

X(X) is a C-linear combination of faxb, where
(a, b) ∈ Zℓ × Zn. More generally, a regular k-form on X is given by ∑i1<⋯<ik

hi1,...,ik
dxi1 ∧

⋯∧ dxik
, where hi1,...,ik

∈ Ω0
X(X) are global regular functions on X. This defines the twisted

algebraic de Rham complex

(Ω●X(X),∇ω) ∶ 0 Ð→ Ω0
X(X)

∇ω
Ð→ Ω1

X(X)
∇ω
Ð→ ⋯

∇ω
Ð→ Ωn

X(X)
∇ω
Ð→ 0, (3.2.11)

whose twisted differential is defined as before: ∇ω = d + ω ∧ . Here, we view ω as a regular
1-form. Note that ∇ω defines an integrable connection on OX with logarithmic poles on the
boundary of a compactification of X. Taking cohomology of (3.2.11) gives C-vector spaces

Hk
(X,ω) ∶= Hk

(Ω●X(X),∇ω) = ker (Ωk
X(X)

∇ω
Ð→ Ωk+1

X (X)) / im (Ωk−1
X (X)

∇ω
Ð→ Ωk

X(X)).

Remark 3.2.3. In passing from the algebraic twisted de Rham complex Ω●X(X) to the
analytic version A●(X), one actually needs to replace the algebraic variety X by its ana-
lytification Xan. This is to emphasize that regular functions should now be thought of in
an analytic, rather than algebraic, sense. In this paper, we drop the superscript (⋅)an to
simplify notation. We write Hk(X,ω) for the twisted homology of Xan and distinguish the
cohomology of the two cochain complexes by using the subscript (⋅)dR to mean the analytic
context.

By the Deligne–Grothendieck comparison theorem [Del70, Corollaire 6.3], we have an
isomorphism Hn

dR(X,ω) ≃H
n(X,ω). We now relate Hn(X,ω) to our vector space VΓ.

Lemma 3.2.4. The C-vector spaces VΓ, H
n(X,ω), and Hn

dR(X,ω) are isomorphic.
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Proof. Let Hn(X,ω) be the twisted homology defined above. By the perfect pairing (3.2.10)
and Hn

dR(X,ω) ≃ H
n(X,ω), every C-linear map Hn(X,ω) → C is given by a C-linear com-

bination of Ia,b’s. We conclude VΓ = HomC(Hn(X,ω),C) ≃Hn
dR(X,ω) ≃H

n(X,ω). ∎

By Lemma 3.2.4, the dimension dimC(VΓ) is equal to that of the twisted top cohomology
groups. To relate this to the topology of X, we make use of the following vanishing theorem.

Theorem 3.2.5. Fix f ∈ C[x,x−1]ℓ and let X be defined as in (3.2.2). For general (s, ν) ∈
Cℓ+n, we have that H⋆(X,ω) =H⋆dR(X,ω) = 0 whenever ⋆ ≠ n.

Remark 3.2.6. Theorem 3.2.5 is proven in work of Douai and Sabbah [DS03] for non-
degenerate functions with isolated singularities and by Douai [Dou] for cohomologically tame
functions. A proof for our setup is included in [AFST22, Appendix A]. The precise meaning
of general in Theorem 3.2.5 follows from the proof of [AFST22, Theorem A.1].

Theorem 1.4 in [AS97] is close to Theorem 3.2.5, but makes extra assumptions on the
Laurent polynomials f. First, it is required that the Newton polytope NP(h) ⊂ Rn+ℓ of

h ∶=
ℓ

∑
j=1

xn+j fj ∈ C[x1, . . . xn+ℓ, x
−1
1 , . . . , x−1

n+ℓ] (3.2.12)

is of maximal dimension n + ℓ − 1. It is easy to verify that NP(h) is contained in an affine
hyperplane, so its dimension is indeed bounded by n + ℓ − 1. Second, it is assumed that h
is non-degenerate with respect to NP(h). This can be phrased as a concrete Zariski open
condition on the coefficients of fj . Namely, it is equivalent to the non-vanishing of the
principal A-determinant from [GKZ94b, Chapter 10] at h. The exponents A appearing in h
will be seen as columns of the matrix A in Subsection 3.2.3. Under these assumptions on f,
the integer dimC(VΓ) can be interpreted as the normalized volume vol(NP(h)) of the Newton
polytope NP(h). This equals (n+ℓ)! times the volume of Conv({0}∪NP(h)) induced by the
lattice spanned by the columns of the matrix A.

Theorem 3.2.7. Fix f ∈ C[x,x−1]ℓ and let X be defined as in (3.2.2). For general (s, ν) ∈
Cℓ+n, we have

dimC (VΓ) = ∣χ(X)∣. (3.2.13)

Moreover, if f is such that the polynomial h from (3.2.12) is non-degenerate with respect to
NP(h) and dim(NP(h)) = n + ℓ − 1, then the number (3.2.13) equals vol(NP(h)).

Proof. Lemma 3.2.4 implies dimC(VΓ) = dimC(H
n
dR(X,ω)). By Theorem 3.2.5, the alternat-

ing sum ∑2n
k=0(−1)k dimC(H

k
dR(X,ω)) equals (−1)n dimC(H

n
dR(X,ω)). This coincides with

the Euler characteristic χ(X) by [AKKI11, Theorem 2.2]. Finally, Lemma 3.2.4 gives
dimC(H

n(X,ω)) = dimC(H
n
dR(X,ω)) and the equality dimC(H

n(X,ω)) = vol(NP(h)) is
[AS97, Theorem 1.4]. ∎

We reiterate that the equality (3.2.13) holds for arbitrary choices of f, since no extra
assumptions are needed in Theorem 3.2.5. The equality ∣χ(X)∣ = vol(NP(h)) needs the
assumptions from [AS97, Theorem 1.4] discussed above. We illustrate this with an example.

Example 3.2.8 (n = 2, ℓ = 1). We consider the very affine surface X = (C∗)2 ∖ V (f) with

f = −xy2
+ 2xy3

+ 3x2y − x2y3
− 2x3y + 3x3y2. (3.2.14)
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The polynomial h in n + ℓ = 3 variables is given by z ⋅ f. The Newton polytope NP(h) is
the convex hull of the six exponents. It has dimension n + ℓ − 1 = 2, and is contained in
the plane with third coordinate equal to 1. This is shown in dark blue color in Figure 3.7.
Appending the origin results in a hexagonal pyramid with Euclidean volume 1. Multiplying
by (n + ℓ)! = 6 gives vol(NP(h)). We will compute in Subsection 3.2.4 that χ(X) = 6. Now
consider

f = −xy2
+ xy3

+ x2y − x2y3
− x3y + x3y2

= xy(x − 1)(y − 1)(x − y). (3.2.15)

The polytope NP(h) did not change. The very affine variety X is the complement of an
arrangement of five lines in C2, shown in Figure 3.1. Its Euler characteristic is 2, which is
the number of bounded regions in that figure, and the number seen in entry (k = 3,m = 4) of
Table 3.1. The discrepancy 2 < 6 is due to the fact that h is now no longer non-degenerate
with respect to NP(h). The vanishing of the principal A-determinant at h follows from
h = ∂h

∂x =
∂h
∂y =

∂h
∂z = 0 at the point (x, y, z) = (1,1,1).

Figure 3.7. The polytopes NP(h) and Conv({0} ∪NP(h)) from Example 3.2.8 (left)
and Example 3.2.10 (right).

In what follows, we show how the twisted de Rham complex (Ω●X(X),∇ω) leads to
C-linear relations among the functions Ia,b ∶ [Γ] ↦ Ia,b(Γ) spanning the vector space VΓ.
In the proof of Lemma 3.2.4, we have used the perfect pairing (3.2.10) between homology
and cohomology. The isomorphism Hn(X,ω) ≃ HomC(Hn(X,ω),C ) is explicitly given by
[faxb dx

x ]↦ Ia,b. From this we conclude that for all complex constants Ca,b

∑
a,b

Ca,b ⋅ Ia,b = 0 in VΓ ⇐⇒

⎡
⎢
⎢
⎢
⎢
⎣

∑
a,b

Ca,b ⋅ f
axb dx

x

⎤
⎥
⎥
⎥
⎥
⎦

= 0 in Hn
(X,ω)

⇐⇒ ∑
a,b

Ca,b ⋅ f
axb dx

x
∈ im (∇ω) .

(3.2.16)

Hence for any ϕ ∈ Ωn−1
X (X), we find linear relations between the generators Ia,b by expanding

∇ω(ϕ) = ∑
a,b

Ca,b(ϕ) ⋅ f
a xb dx

x
. (3.2.17)

Remark 3.2.9. In the physics literature, relations obtained in this way are commonly
referred to as IBP relations. They are typically derived using Stokes’ theorem in the setup
of dimensional regularization, e.g. [Eti99, Proposition 12]. We stress that we deduce our
relations exploiting purely cohomological arguments. See Appendix A for further details.
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We clarify this procedure with two examples.

Example 3.2.10 (Example 3.2.2 continued). Let f = (x − 1, x − 2) ∈ C[x,x−1]2, so that
X = P1 ∖ {0,1,2,∞} is a punctured Riemann sphere with Euler characteristic χ(P1) − 4 =
2− 4 = −2. We can obtain this also via a volume computation by setting h = xy − y + xz − 2z.
Appending 0 to NP(h) gives the pyramid shown in the right part of Figure 3.7. We compute
vol(NP(h)) = 2 = −χ(X). For a concrete example of (3.2.17), we take s, ν as in Example 3.2.2
and set ϕ = 1. Applying ∇ω = d + ω∧ ∶ Ω0

X(X) → Ω1
X(X) with ω as in (3.2.8) to 1 ∈ Ω0

X(X),
we get

∇ω(1) =
1
2
f−1

1 f0
2x

1 dx
x
+

1
2
f0

1 f
−1
2 x1 dx

x
+

1
2
f0

1 f
0
2x

0 dx
x
.

In the notation (3.2.17), this means C(−1,0),1(1) = C(0,−1),1(1) = C(0,0),0(1) = 1
2 . We remind

the reader that this entails that, for every choice of the twisted cycle Γ, we have

∫Γ

√
(x − 1)(x − 2)x

x − 1
dx + ∫Γ

√
(x − 1)(x − 2)x

x − 2
dx + ∫Γ

√
(x − 1)(x − 2)x

x
dx = 0.

In what follows, we denote by xk̂ ∶= x1⋯xk−1 ⋅ xk+1⋯xn and by dxk̂ the (n − 1)-form
dxk̂ ∶= dx1 ∧ ⋯ ∧ dxk−1 ∧ dxk+1 ∧ ⋯ ∧ dxn, i.e., the (differential with respect to the) k-th
coordinate is omitted. In this notation,

dxk̂

xk̂

=
dx1
x1
∧⋯ ∧

dxk−1
xk−1

∧
dxk+1
xk+1

∧⋯ ∧
dxn

xn
and

dxk̂

x
=

dxk̂

x1⋯xn
. (3.2.18)

Example 3.2.11 (ℓ = 1). Let f ∈ C[x,x−1] be a Laurent polynomial in n variables, and let
X = (C∗)n ∖ V (f) be the associated very affine variety. For 1 ≤ k ≤ n, consider the (n − 1)-
form ϕ = pfaxb dxk̂

x ∈ Ωn−1
X (X), with p ∈ C[x]. Applying ∇ω = d + ω∧ with ω as in (3.2.3) to

ϕ, we obtain the following relation in Hn(X,ω):

(
∂p

∂xk
faxb

+ (a + s)p
∂f

∂xk
fa−1xb

+ (bk + νk − 1)pfaxb−ek)
dx
x
= 0, (3.2.19)

where ek ∈ Nn denotes the k-th standard unit vector. By expanding p as a sum of monomials,
the equivalence in (3.2.16) gives a linear relation among the integrals Ia,b.

For any regular (n − 1)-form ϕ, the method illustrated above provides a relation among
some of the Ia,b. However, this does not (directly) allow to compute a relation among a set
of given generators {Ia,b}(a,b)∈S , where ∣S∣ > χ(X). Doing so—using tools from numerical
nonlinear algebra—is one of our topics in Subsection 3.2.4.

3.2.2. Mellin transform

Let f = (f1, . . . , fℓ) ∈ C[x1, . . . , xn]
ℓ be a tuple of polynomials. This subsection studies

the C(s, ν)-vector space

Vs,ν ∶= SpanC(s,ν) {(s, ν)z→ ∫Γ
fs+a xν+b dx

x
}
(a,b) ∈Zℓ×Zn

, (3.2.20)

defined in the beginning of Section 3.2 . For the sake of simplicity, throughout this subsection,
we denote the integral in (3.2.1) by Ia,b. It is to be read as a function of the variables s ∈ Cℓ

and ν ∈ Cn. Hence, the vector space (3.2.20) can be equivalently expressed as

Vs,ν = ∑
(a,b) ∈Zℓ×Zn

C(s, ν) ⋅ Ia,b. (3.2.21)
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We comment on how to interpret the functions Ia,b. For fixed general (s∗, ν∗), let Γ(s∗, ν∗)
be a twisted cycle in Hn(X,ω(s

∗, ν∗)). We here emphasize the dependence of ω from (3.2.3)
on s, ν. To compute Ia,b(s, ν) for (s, ν) in a small open neighborhood of (s∗, ν∗), one inte-
grates over the unique cycle Γ(s, ν) obtained from Γ(s∗, ν∗) by analytic continuation. That
is, Ia,b(s, ν) = ⟨[f

axb dx
x ], [Γ(s, ν)]⟩, with ⟨⋅, ⋅⟩ as in (3.2.10). This defines Ia,b on an open

neighborhood of some fixed (s∗, ν∗). The results in this subsection do not depend on the
choice of (s∗, ν∗) or the choice of cycle Γ(s∗, ν∗). In what follows, we tacitly assume that
these are fixed.

Throughout this subsection, we assume that f = (f1, . . . , fℓ) is a tuple of polynomials
instead of Laurent polynomials. There is no loss of generality: for some m ∈ Nn, f̃ ∶= xmf ∈
C[x1, . . . , xn]

ℓ consists of polynomials. Let ν̃ ∶= ν −m ⋅ (s1 +⋯+ sℓ) so that C(s, ν) = C(s, ν̃).
The C(s, ν)-vector space Vs,ν (3.2.20) is equal to the C(s, ν̃)-vector space Vs,ν̃ defined by f̃ .

The key tool to determine the dimension of the vector space Vs,ν is the Mellin transform.
This allows to connect the integrals Ia,b with the language of differential and shift operators.

Definition 3.2.12. Let f ∈ C[x1, . . . , xn]
ℓ be a tuple of polynomials and fix s ∈ Cℓ. We

define the Mellin transform of fs to be the function in the variables ν = (ν1, . . . , νn) given by

M{fs
}(ν) ∶= ∫Γ

f s xν dx
x
= I0,0(s, ν), (3.2.22)

where Γ ∶= Γ(s, ν) ∈Hn(X,ω(s, ν)) is a twisted cycle, as defined in Subsection 3.2.1.

The operator M is naturally extended to functions fs+axb, i.e., M(fs+axb) = Ia,b(s, ν).

Lemma 3.2.13. The Mellin transform obeys the following rules:

M{xi ⋅ f
s
}(ν) = M{fs

}(ν + ei),

M{xi ⋅
∂fs

∂xi
}(ν) = −νi ⋅ M{f

s
}(ν).

(3.2.23)

Proof. The first equality follows immediately from the definition. For the second, we again
use the notation dx̂i ∈ Ωn−1(X) introduced in (3.2.18) and write out

M{xi ⋅
∂fs

∂xi
}(ν) = ∫Γ

∂fs

∂xi
xν+ei

dx
x
= ∫Γ

n

∑
j=1

sj
1
fj

∂fj

∂xi
fsxν+ei

dx
x

= (−1)i−1
∫Γ

d(fsxν dx̂i

x̂i

) − νi ⋅M(f
s
)(ν),

where the last equality follows from Leibniz’ rule. An explicit computation shows that
(−1)i−1d(fsxν dx̂i

x̂i
) = fsxν∇ω(

dx̂i

x̂i
), hence

(−1)i−1
⋅ ∫Γ

d(fsxν dx̂i

x̂i

) = ⟨[Γ], [∇ω(
dx̂i

x̂i

)]⟩ = 0

by the perfect pairing introduced in (3.2.10). This proves the second equality in (3.2.23). ∎

Therefore, the Mellin transform turns multiplication by x±1
i into shifting the new variable

νi by ±1 and the action of the ith Euler operator θi ∶= xi∂i into multiplication by −νi.

The techniques we are going to use to study the vector space Vs,ν come from D-module
and Bernstein–Sato theory. The basic definitions can be found in Section 1.2. In the study
of the Mellin transform, we will use algebras of shift operators—also commonly called finite
difference operators—with polynomial coefficients.
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Definition 3.2.14. The (n-th) shift algebra with polynomial coefficients

Sn ∶= C[ν1, . . . , νn]⟨σ
±1
1 , . . . , σ±1

n ⟩

is the free C-algebra generated by {νi, σi, σ
−1
i }i=1,...,n modulo the following relations: all

generators commute, except νi and the shift-operators σi. They obey the rule

σ±1
i νi = (νi ± 1)σ±1

i . (3.2.24)

This implies that σaνb = (ν + a)bσa for any a ∈ Zn, b ∈ Nn, where we use multi-index
notation, e.g., (ν +a)b = (ν1 +a1)

b1⋯(νn +an)
bn . The shift algebra naturally comes into play

when studying the Mellin transform of functions. Mimicking the rules in Equation (3.2.23),
the (algebraic) Mellin transform (cf. [LS91b]) is the isomorphism of C-algebras

M{⋅} ∶ DGn
m
Ð→ Sn, x±1

i ↦ σ±1
i , θi ↦ −νi, (3.2.25)

where DGn
m

is the global ring of differential operators introduced in Equation (1.2.3). We
conventionally use the notation M{⋅} both for the Mellin transform of functions (Definition
3.2.12) and that of operators (Equation (3.2.25)). Note that M{⋅} naturally extends to an
isomorphism of DGn

m
[s1, . . . , sℓ] and Sn[s1, . . . , sℓ] by mapping sj to itself.

Remark 3.2.15. Via the map M{⋅}, one can also define the Mellin transform M{M} of a
DGn

m
-module M. It is the following module over Sn. As abelian groups, M{M} =M, and Sn

acts by νi ●m ∶= −θi ●m and σ±1
i ●m ∶= x

±1
i ●m for m ∈M, i = 1, . . . , n.

Let us first assume ℓ = 1. Let bf ∈ C[s] denote the Bernstein–Sato polynomial of f ∈
C[x1, . . . , xn]. Therefore, there exists an operator Pf ∈Dn[s] such that

Pf(s) ● f
s+1
= bf(s) ⋅ f

s. (3.2.26)

Applying the Mellin transform to both sides of Equation (3.2.26) yields

bf(s) ⋅M{f
s
} = M{Pf} ●M{f

s+1
}. (3.2.27)

We refer to this relation as being lowering in s. This means that it provides a way for writing
the integral I0,0(s, ν) as a linear combination of integrals of type I0,b(s+1, ν) for some b ∈ Zn.
One obtains a raising relation by the simple trick of considering f ∈ C[x] as a differential
operator of order 0:

M{fs+1
} = M{f ⋅ fs

} = M{f}
´¹¹¹¹¸¹¹¹¹¹¶
∈Sn

●M{fs
}. (3.2.28)

Moreover, for any operator P ∈ AnnDn[s](f
s), (see Equation (1.2.5))applying the Mellin

transform to the equation P ● fs = 0, one attains a C(s, ν)-linear relation among integrals
Ia,b. The following example shows how to compute this ideal in practice.

Example 3.2.16. Let f = (x − 1)(x − 2) ∈ C[x]. As showed in Example 1.2.10, in this
case, the Dn[s]-ideal AnnDn[s](f

s) is generated by the operator P = f∂x − s∂x ● f. A linear
relation in Vs,ν among integrals of the form Ia,b can be attained by expanding the equation
M{P} ●M{fs} = 0. The same relation is given with the method as in Example 3.2.2 by
taking the 0-form ϕ = f.

Proposition 3.2.17. Fix f ∈ C[x1, . . . , xn] and Γ ∈ Hn(X,ω). The following C(s, ν)-vector
spaces coincide:

Vs,ν = ∑
a ∈Zℓ

C(s, ν)⊗C[s,ν] (Sn ● Ia,0) = C(s, ν)⊗C[s,ν] (Sn[s] ● I0,0) .
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Proof. The first equality follows from σb ● Ia,0 = Ia,b. The second equality follows from the
fact that via the Mellin transform, one obtains both lowering and increasing shift relations
in s as in Equations (3.2.27) and (3.2.28). ∎

This statement is contained in [BBKP19] for the special case that Γ = Rn
>0 and f is a

polynomial. Elements of a basis of Vs,ν are called master integrals in physics literature. We
now present the main result of [BBKP19], which relates the number of master integrals to
the topological Euler characteristic of our very affine variety for the case ℓ = 1.

Theorem 3.2.18 ([BBKP19, Corollary 37]). The dimension of Vs,ν is given by the signed
topological Euler characteristic of the hypersurface complement (C∗)n ∖ V (f), i.e.,

dimC(s,ν)(Vs,ν) = (−1)n ⋅ χ ((C∗)n ∖ V (f)) .

The proof of this statement in [BBKP19, Section 3] builds on work of Loeser and Sabbah
[LS91a, LS92]. Interested readers can find more details in the proof of Theorem 3.2.23, in
which we generalize Theorem 3.2.18 to arbitrary ℓ > 1.

The following example illustrates how to obtain shift relations among integrals when
f ∈ C[x1 . . . , xn] is smooth, starting from a Bernstein–Sato operator. We also exhibit the
(n − 1)-form to which the very same relation corresponds via the method presented in Sub-
section 3.2.1.

Example 3.2.19. Let f ∈ C[x1, . . . , xn] be smooth. Hence bf = (s + 1) ∈ C[s]. Since f
and its partial derivatives are coprime, there exist polynomials p1, . . . , pn, q ∈ C[x] such that
(∑

n
k=1 pk∂k ● f) + qf = 1. Then Pf = (∑k pk∂k) + bfq ∈ Dn[s] is a Bernstein–Sato operator of

f since

Pf ● f
s+1
= (s + 1)f s

⋅
n

∑
k=1

pk
∂f

∂xk
+ (s + 1)q ⋅ fs+1

= (s + 1) ⋅ (
n

∑
k=1

pk
∂f

∂xk
+ qf)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

⋅fs
= bf ⋅ f

s.

Hence Pff − bf ∈ AnnDn[s](f
s). Given a polynomial p ∈ C[x], we denote by p(σ) its image

under the isomorphism (3.2.25). The Mellin transform of Pf is

M{Pf} =
n

∑
k=1
((1 − νk)pk(σ)σ

−1
k −

∂pk

∂xk
(σ)) + (s + 1)q(σ) ∈ Sn[s].

Applying the Mellin transform to Equation (3.2.26) induces the shift relation

n

∑
k=1
((1 − νk)pk(σ)σ

−1
k −

∂pk

∂xk
(σ)) ●M{fs+1

} + (s + 1)q(σ) ●M{fs+1
} = (s + 1)M{fs

}.

Expanding this equality, one obtains a C(s, ν)-linear combination of integrals of type (3.2.20).
Precisely the same relation among integrals is attained with the method illustrated in (3.2.16)
for the (n− 1)-form ϕ = f ⋅∑n

k=1 pk
dxk̂

x ∈ Ωn−1
X (X). The image under ∇ω of a single summand

of ϕ is displayed in Equation (3.2.19). The correspondence between annihilating operators
and (n − 1)-forms is stated more clearly in the next result.
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Proposition 3.2.20. Let ℓ = 1 and consider a differential operator P ∈ AnnDn[s](f
s) which

is of degree at most 1 in ∂1, . . . , ∂n, i.e.,

P =
n

∑
i=1
pi(x, s) ⋅ ∂i + q(x, s), where p1, . . . , pn, q ∈ C[x1, . . . , xn, s].

Then the equalities M{P} ●M{f s} = 0 and (3.2.16) with ϕ = ∑n
i=1(−1)i−1pi

dxî

x lead to the
same linear relation of integrals Ia,b.

Proof. Since P ∈ AnnDn[s](f
s), we can determine the polynomial q in terms of the pi:

(
n

∑
i=1
sipif

s−1∂i ● f) f
s
+ qfs

= 0 ⇐⇒ q = −
n

∑
i=1
sipif

s−1∂i ● f.

An explicit computation shows that the relation obtained from M{P ● fs} = 0, where

M{P} = −(
n

∑
i=1
(νi − 1)pi(σ)σ

−1
i +

n

∑
i=1

∂pi

∂xi
(σ) + s

1
f(σ)

n

∑
i+1

∂f

∂xi
(σ)pi(σ)) , (3.2.29)

coincides with the one in cohomology obtained from (3.2.17). This is immediate when
computing explicitly

∇ω (
n

∑
i=1
(−1)i−1pi

dx̂i

x
) = (

n

∑
i=1
(νi − 1)pix

−1
i +

n

∑
i=1

∂pi

∂xi
+ s

1
f

n

∑
i=1

∂f

∂xi
pi)

dx
x
,

where ∇ω(ϕ) = dϕ + ω ∧ ϕ, and ω is our 1-form from (3.2.3). To be precise, in this last
computation, we take s = s∗ and ν = ν∗ to be fixed, general complex numbers. The coefficients
Ca,b(ϕ) in the relation (3.2.17) are obtained from evaluating the rational function coefficients
of Ia,b in M{P} ●M{fs} = 0 at (s, ν) = (s∗, ν∗). ∎

For ℓ > 1 polynomials f1, . . . , fℓ, one needs to study Bernstein–Sato ideals instead. These
where introduced in Subsection 1.2.2. However, in (1.2.7), no individual shifts in the variables
si can be taken into account; only a simultaneous shift by the all-one vector. A remedy is
provided by the following ideals of Bernstein–Sato type, which also enter the study of the
monodromy conjecture in [BvdVVW21, BvdVWZ21].

Definition 3.2.21. Let a ∈ Nℓ be a non-negative integer vector. The a-Bernstein–Sato
ideal of (f1, . . . , fℓ) is the ideal Ba

(f1,...,fℓ)
◁ C[s1, . . . , sℓ] consisting of all polynomials p ∈

C[s1, . . . , sℓ] for which there exists P ∈Dn[s1, . . . , sℓ] such that

P ● (fs1+a1
1 ⋯f sℓ+aℓ

ℓ ) = p ⋅ fs1
1 ⋯f

sℓ

ℓ . (3.2.30)

Again by [Sab87], the a-Bernstein–Sato ideal is non-trivial. In this notation, for a =
(1, . . . ,1) the all-one vector, B(1,...,1)

(f1,...,fℓ)
= B(f1,...,fℓ)

.At present, the computation of a-Bernstein–
Sato ideals using computer algebra software is out of reach. Yet, we can use a-Bernstein–Sato
ideals to generalize Proposition 3.2.17 to a tuple of ℓ polynomials as follows.

Proposition 3.2.22. Fix Γ ∈ Hn(X,ω) and let f1, . . . , fℓ ∈ C[x1, . . . , xn]. The following
C(s, ν) = C(s1, . . . , sℓ, ν1, . . . , νn)-vector spaces coincide:

Vs,ν = ∑
(a,b) ∈Zℓ×Zn

C(s, ν) ⋅ Ia,b = ∑
a∈Zℓ

C(s, ν)⊗C[s,ν] (Sn ● Ia,0)

= C(s, ν)⊗C[s,ν] (Sn[s1, . . . , sℓ] ● I0,0) .

(3.2.31)
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Proof. Let ei ∈ Nℓ denote the i-th standard unit vector. Then

M{fs+ei} = M{fi ⋅ f
s
} = M{fi} ●M{f

s
}

is an increasing relation in si. To construct lowering relations in the si, we study a-Bernstein–
Sato ideals for a = ei. Applying the Mellin transform to both sides of Equation (3.2.30) yields

M{P} ●M{fs+ei} = p ⋅M{fs
},

a lowering shift relation in si. ∎

With those tools at hand, we can now generalize Theorem 3.2.18 to ℓ > 1. Denote by
Dn(s) ∶=Dn[s]⊗C[s] C(s) the n-th Weyl algebra over the field C(s) = C(s1, . . . , sℓ).

Theorem 3.2.23. Let f ∈ C[x1, . . . , xn]
ℓ and denote by M the Dn(s)-module Dn(s) ● f

s.
Then

dimC(s,ν) (Vs,ν) = ∣χ (ι
∗
M) ∣ = ∣χ ((C∗)n ∖ V (f1⋯fℓ)) ∣,

where ι∶Gn
C(s),m ↪ An

C(s) denotes the embedding of the algebraic n-torus over C(s) into the
affine n-space over C(s), and ι∗M is the D-module pullback of M via ι.

Proof. We first prove that ι∗M =M[x−1] =DGn
m(s)
●fs is holonomic. Note that the operator

Pi(s) ∶= f1⋯fℓ ⋅ ∂i −
ℓ

∑
j=1

sjfĵ

∂fj

∂xi
∈ AnnDn[s1,...,sℓ]

(fs
)

annihilates f s = fs1
1 ⋯f

sℓ

ℓ for all i = 1, . . . , n, where fĵ denotes f1⋯fj−1 ⋅ fj+1⋯fℓ. Denote
by I the Dn[s]-ideal generated by P1(s), . . . , Pn(s). Clearly, I ⊆ AnnDn[s](f

s). Hence, for
every s∗ ∈ Cℓ, the Dn-ideal Is∗ ∶= ⟨P1(s

∗), . . . , Pn(s
∗)⟩ has finite holonomic rank and there-

fore its Weyl closure W (Is∗) = RnIs∗ ∩Dn is holonomic by [SST00, Theorem 1.4.15]. Since
Is∗ ⊆W (Is∗) ⊆ AnnDn(f

s∗), this proves that for all s∗ ∈ Cℓ, the Dn-ideal AnnDn(f
s∗) is holo-

nomic. Hence Dn(s)●f
s ≅ Dn(s)/AnnDn(s)(f

s) is a holonomic Dn(s)-module. Now denote
by DGn

m
(s) =DGn

m
[s]⊗C[s] C(s) the Weyl algebra over the algebraic n-torus over C(s). By

[HTT08, Theorem 3.2.3], also the DGn
m
(s)-module ι∗M =M[x−1] =DGn

m
(s)/AnnDGn

m
(s)(f

s)

is holonomic. Therefore, by a classical result of Kashiwara, its solution complex—or, equiva-
lently, its de Rham complex—is an element of the bounded derived category of constructible
sheaves. Therefore, ι∗M has finite Euler characteristic by Kashiwara’s index theorem for
constructible sheaves [Kas85].

For the rest of the proof, we follow and adapt the strategy of proof of [BBKP19, Section 3]
to the case ℓ > 1. The next step is to show that dimC(s,ν)(Vs,ν) equals the Euler characteristic
of the de Rham complex of ι∗M. Recall that AnnDGn

m[s]
(fs) turns into AnnSn[s](I0,0) via

the Mellin transform (3.2.25). By Proposition 3.2.22, we hence obtain the equality

dimC(s,ν) (Vs,ν) = dimC(s,ν) (C(s, ν)⊗C[s,ν] (Sn[s] ● I0,0))

= dimC(s,θ) (C(s, θ)⊗C[s,θ] (DGn
m
[s] ● fs)) ,

where θ = (θ1, . . . , θn). By [LS92, Théorème 2] and noting that we work over the torus
over C(s),

dimC(s,θ) (C(s, θ)⊗C[s,θ] (DGn
m
[s] ● fs)) = χ (ι∗M) .
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Now note that each element of DGn
m
(s) ● fs can be uniquely written as h ⋅ fs for some

h ∈ C(s)[x±1, f−1
1 , . . . , f−1

ℓ ]. The natural action of DGn
m
(s) on ι∗M is given by

∂i ● (hf
s
) =

∂h

∂xi
fs
+

ℓ

∑
j=1

hsj
1
fj

∂fj

∂xi
fs.

Moreover, the morphism

DGn
m
(s) ● fs

Ð→ C(s) [x±1, f−1
1 , . . . , f−1

ℓ ] , h ⋅ fs
↦ h

is an isomorphism of C(s)[x±1]-modules. It remains to prove that χ(ι∗M) is equal to the
signed Euler characteristic of (C∗)n ∖ V (f1⋯fℓ). For that, we first prove that the DGn

m
(s)-

module ι∗M and the Dn-module C[x±1, f−1
1 , . . . , f−1

ℓ ] have the same Euler characteristic.
Denote byN theDn-module C[x±1] and byN [f−1] = N [f−1

1 , . . . , f−1
ℓ ]. ThenDGn

m
●fs and

N [f−1][s] are isomorphic as C-vector spaces. We now introduce new variables t1, . . . , tℓ that
commute with x1, . . . , xn and consider DGn

m
●fs as module over DGn+ℓ

m
= C[x±1, t±1]⟨∂x, ∂t⟩ via

t±1
i ● (n(s)f

s
) ∶= n(s ± ei)f

sf±1
i and ∂ti ● (n(s)f

s
) ∶= −si ⋅ n(s − ei)f

s 1
fi
. (3.2.32)

Since ∂titi = −si, the following DGn+ℓ
m

-modules are isomorphic by the rules in (3.2.32):

(((DGn
m
● fs
/∂tℓ
● (DGn

m
● f s)) /∂tℓ−1 ● [DGn

m
● fs]) /⋯) /∂t1 ● [DGn

m
● fs]

=
DGn

m
● fs

∂t1 ● (DGn
m
● fs) +⋯ + ∂tℓ

● (DGn
m
● fs)

=
DGn

m
● fs

s1t−1
1 ● (DGn

m
● fs) +⋯ + sℓt

−1
ℓ ● (DGn

m
● fs)

=
DGn

m
● fs

s1 ⋅DGn
m
● fs +⋯ + sℓ ⋅DGn

m
● fs

≅ N [f−1
] .

Since ∂tℓ
is injective on DGn

m
● f s, the proof of [BBKP19, Theorem 35] shows that χ(DGn

m
●

fs) = χ(DGn
m
● fs/∂tℓ

● (DGn
m
● fs)). By iterating this reasoning, we conclude that

χ (DGn
m
● f s) = χ (N [f−1

]) . (3.2.33)

Now denote by Mt{DGn
m
●f s} the Mellin transform of DGn

m
●fs with respect to the variables

t1, . . . , tℓ. Then Mt{DGn
m
● fs}(s) ≅ (DGn

m
● f s)(t1∂t1 , . . . , tℓ∂tℓ

), since tensoring with C(t∂t)

just extends the coefficients to C(s). Again by [LS92],

χ (DGn
m
● f s) = dimC(θ,t∂t) ((DGn

m
● fs) (θ, t∂t)) = dimC(θ,s) ((DGn

m
● f s) (s, t∂t))

= dimC(s,θ) (M
t
(DGn

m
● fs
)(s, θ)) = χ (Mt (DGn

m
● fs) (s)) ,

see in particular [BBKP19, Theorem 35] for the first equality. Therefore,

Mt
(DGn

m
● fs
)(s) ≅ C(s)[x±1, f−1

1 , . . . , f−1
ℓ ] ⋅ f

s

is ι∗M. Hence, by (3.2.33), χ(ι∗M) = χ(C[x±1, f−1
1 , . . . , f−1

ℓ ]), concluding the proof. ∎

Remark 3.2.24. Alternatively, one can prove Theorem 3.2.23 by an inductive argument.
We demonstrate how to reduce the proof of the statement from ℓ to ℓ − 1 polynomials. Let
M be a Dn-module and f1, f2 ∈ C[x1, . . . , xn] two polynomials. Consider the module M1 ∶=
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M[f−1
1 ]. By applying [BBKP19, Equation (3.13)] to M1, we see that χ(M1[s2, f

−1
2 ]f

s2
2 ) =

χ(M1[f
−1
2 ]). More precisely, one gets

χ(M[s2, f
−1
1 , f−1

2 ]f
s2
2 ) = χ(M[f

−1
1 , f−1

2 ]).

Now denote M2 ∶=M[s2, f
−1
2 ]f

s2
2 . Again by [BBKP19, (3.13)], we get that χ(M2[f

−1
1 ]) =

χ(M2[s1, f
−1
1 ]f

s1
1 ) and hence

χ(M[s1, s2, f
−1
1 , f−1

2 ]f
s1
1 fs2

2 ) = χ(M[f
−1
1 , f−1

2 ]).

Iterating this process and setting M to be C[x±1
1 , . . . , x±1

n ] concludes the reasoning.

3.2.3. GKZ systems
It is well known that generalized Euler integrals provide a full description of the solu-

tions to systems of linear PDEs called GKZ systems or A-hypergeometric systems [GKZ90].
Recent works by Matsubara-Heo and Takayama [MH22, MH20, MH21, MHT22] expose con-
nections with the previous subsections. In what follows, we review some of these results and
demonstrate how to compute with GKZ systems.

Throughout this subsection, we consider the parameters ν ∈ Cn, s ∈ Cℓ, and the integers
a = b = 0 to be fixed. We view the integrals (3.2.1) as functions of the coefficients of the
Laurent polynomials fj . Before making this precise, we introduce some additional notation.

We fix finite subsets {Aj}j=1,...,ℓ of Zn representing the monomial supports of the fj :

fj(x; cj) = ∑
α∈Aj

cα,j x
α. (3.2.34)

The parameters cj = (cα,j)α∈Aj take values in CAj ∶= C∣Aj ∣. The Cayley configuration of
{Aj}1≤j≤ℓ is {(α, ej) ∣α ∈ Aj}, given by the columns of the (n + ℓ) ×∑ℓ

j=1 ∣Aj ∣ matrix

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 A2 Aℓ

1 ⋯ 1 0 ⋯ 0 0 ⋯ 0
0 ⋯ 0 1 ⋯ 1 ⋯ 0 ⋯ 0
⋮ ⋮ ⋮

0 ⋯ 0 0 ⋯ 0 1 ⋯ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.2.35)

Here, Aj is represented by an n× ∣Aj ∣ matrix, and ej is the j-th standard unit vector in Nℓ. It
will be convenient to view A as the disjoint union of A1, . . . ,Aℓ and to collect all coefficients
in a vector c = (cα)α∈A, with entries indexed by A. The parameters c take values in CA ∶=

CA1 ×⋯ ×CAℓ = C∣A1∣+⋯+∣Aℓ∣.

The very affine variety X from (3.2.2) now depends on the choice of coefficients. We
write

X(c) ∶= (C∗)n ∖ V (
ℓ

∏
j=1

fj (x; cj) ). (3.2.36)

For fixed c∗ ∈ CA, let Γc∗ = ∆ ⊗C ϕc∗ be a cycle in the vector space Cn(X(c
∗),L∨ω(c∗))

from the twisted chain complex introduced in Subsection 3.2.1. For c in a sufficiently small
neighborhood Uc∗ ⊂ CA of c∗, the singular chain ∆ is contained in X(c) as well. The 1-
form ω(c) depends rationally on c, and there is a unique section ϕc of L∨ω(c) such that ϕc
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is obtained from ϕc∗ by analytic continuation. Varying c in a small neighborhood Uc∗ , we
obtain a function

IΓc∗
∶= (c ↦ ∫Γc∗→c

f(x; c)s xν dx
x
) , (3.2.37)

with f(x; c) = (fj(x; cj))1≤j≤ℓ. The twisted cycle Γc∗→c = ∆ ⊗C ϕc over which is integrated
depends on c, as well as on Γc∗ . The vector space Vc∗ from the introduction is gener-
ated by the functions (3.2.37), where [Γc∗] ranges over the twisted homology vector space
Hn(X(c

∗), ω(c∗)) and two such functions are identified if they coincide on an open subset
containing c∗.

We will now write down differential operators which annihilate the functions (3.2.37).
We consider the Weyl algebra DA = C[cα ∣α ∈ A]⟨∂a ∣α ∈ A⟩ whose variables are indexed by
the columns of A. The toric ideal associated to A is the binomial ideal

IA ∶= ⟨∂
u
− ∂v
∣u − v ∈ ker(A), u, v ∈ NA

⟩ ◁ C[∂α ∣α ∈ A]. (3.2.38)

Here we use the notation u = (uα)α∈A ∈ NA and ∂u = ∏α∈A ∂
uα
α , and similarly for v. For the

convenience of the reader, we now verify that any operator in IA indeed annihilates IΓc∗
.

One checks that

∂u
● IΓc∗

(c) = ∫Γc∗→c

s(s − 1)⋯(s − ∣u∣ + 1) f(x; c)s−∣u∣ xAu+ν dx
x
, (3.2.39)

where ∣u∣ = ∑α∈A ua. If u−v ∈ ker(A), we have ∣u∣ = ∣v∣, and Au = Av, which proves (∂u−∂v)●

IΓc∗
= 0. The ideal IA is called toric because, viewed as an ideal in the polynomial ring, it

defines a toric variety. We will show how to compute its generators in Example 3.2.26.
We now define another D-ideal of differential operators annihilating our integral func-

tions (3.2.37). This ideal, in contrast to IA, will depend on the exponents s and ν. We write
κ ∈ Cn+ℓ for the vector (−ν, s)⊺. Let JA,κ be the ideal generated by the entries of Aθ − κ
where θ ∶= (θα)α∈A and θα = cα∂α. It is well known that P ● IΓc∗

= 0 for all P ∈ JA,κ [GKZ90,
Theorem 2.7]. Nevertheless, it is instructive to prove this using results from Subsection 3.2.1.

Lemma 3.2.25. Let IA and JA,κ be as defined above. The DA-ideal HA(k) ∶= IA + JA,κ

annihilates the function (3.2.37) for any choice of the twisted cycle Γc∗ .

Proof. We argued above that IA annihilates IΓc∗
. The i-th entry of the vector Aθ − κ, with

1 ≤ i ≤ n, is ∑ℓ
j=1∑α∈Aj

αi cα∂α + νi. Applying (3.2.39), we compute that

(Aθ − κ)i ● IΓc∗
=

ℓ

∑
j=1
∑

α∈Aj

αi cα∫Γc∗→c

sjf
s−ejxα+ν dx

x
+ νi∫Γc∗→c

fsxν dx
x

=
ℓ

∑
j=1
∫Γc∗→c

sjf
sxν f−1

j

⎛

⎝
∑

α∈Aj

αicαx
α⎞

⎠

dx
x
+ νi∫Γc∗→c

fsxν dx
x

= ⟨

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

ℓ

∑
j=1

sjf
−1
j

∂fj

∂xi
xi + νi

⎞

⎠

dx
x

⎤
⎥
⎥
⎥
⎥
⎦

, [Γc∗→c]⟩ ,

where we use the pairing between Hn(X(c), ω(c)) and Hn(X(c), ω(c)) seen in (3.2.10). This
evaluates to zero by the fact that the cocycle is zero in cohomology: it is ∇ω(

dx̂i

x̂i
). The entry

(Aθ−κ)n+j is ∑α∈Aj
cα∂α−sj . Using (3.2.39), one checks that (Aθ−κ)n+j annihilates IΓc∗

. ∎
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Example 3.2.26. (n = 2, ℓ = 1) We consider the polynomial f ∈ C[x, y] defined in (3.2.14),
but replace its coefficients by indeterminates c1, . . . , c6. The matrix A ∈ Z3×6 in this case is

A =
⎛
⎜
⎝

1 1 2 2 3 3
2 3 1 3 1 2
1 1 1 1 1 1

⎞
⎟
⎠
. (3.2.40)

Using the Macaulay2 [GS] package Dmodules [LT], one computes that the toric ideal IA is
generated by 9 binomials:

IA = ⟨∂2∂5 − ∂1∂6, ∂3∂4 − ∂1∂6, ∂4∂
2
5 − ∂3∂

2
6 , ∂1∂

2
5 − ∂

2
3∂6, ∂

2
4∂5 − ∂2∂

2
6 ,

∂1∂4∂5 − ∂2∂3∂6, ∂1∂
2
4 − ∂

2
2∂6, ∂2∂

2
3 − ∂

2
1∂5, ∂

2
2∂3 − ∂

2
1∂4⟩.

The ideal JA,κ is generated by the 3 operators

θ1 + θ2 +2θ3 +2θ4 +3θ5 +3θ6 +ν1, 2θ1 +3θ2 + θ3 +3θ4 + θ5 +2θ6 +ν2, θ1 + θ2 + θ3 + θ4 + θ5 + θ6 − s.

Together, these 12 operators generate HA(κ).

The DA-ideal HA(κ) from Lemma 3.2.25 is called a GKZ system or A-hypergeometric
system of degree κ. Such systems are examples of regular singular D-modules. Solution
functions of the GKZ system HA(κ) are called A-hypergeometric functions. Lemma 3.2.25
implies that our functions (3.2.37) are A-hypergeometric. Under some non-resonance condi-
tions on κ (see Definition 3.2.27), the converse is also true: all A-hypergeometric functions
can be written in the form (3.2.37). To make this precise, let Sol be the sheaf of solutions
of the DA-module DA/HA(κ) and let Solc∗ be the stalk at c∗. By Lemma 3.2.25, there is a
map Hn(X(c

∗), ω(c∗))→ Solc∗ which sends Γc∗ to the image of IΓc∗
in Solc∗ . The image of

this map is VΓc∗
.

Definition 3.2.27. A vector κ ∈ Cn+ℓ is non-resonant if it does not belong to C ⋅ F + Z ⋅A
for any facet F of the cone ∑α∈A R≥0 ⋅ α generated by A.

Theorem 3.2.28. If κ = (−ν, s)⊺ is non-resonant, the C-linear map Hn(X(c
∗), ω(c∗)) →

Solc∗ is an isomorphism, and dimC(Solc∗) = dimC(VΓc∗
) = ∣χ(X(c∗))∣.

Proof. The first claim is [GKZ90, Theorem 2.10]. The statement about the dimension of
Solc∗ follows from the perfect pairing (3.2.10), Lemma 3.2.4, and Theorem 3.2.7. ∎

By the CKK theorem (see Theorem 1.2.9)) the dimension of the space of solutions of a
D-ideal I on any simply connected domain U outside the singular locus Sing(I) is equal to
the holonomic rank of I. The definition of the singular locus of a D-ideal can be found in
[SST00, (1.32)]. In the case of I = HA(κ), the holonomic rank is given by the dimension
of RA/(RA ⋅HA(κ)) as a C(c) vector space, where C(c) is the field of rational functions in
the coefficients (cα)α∈A, and RA denotes the Weyl algebra with rational function coefficients.
This was outlined in the introduction. The singular locus of our A-hypergeometric system
is the principal A-determinant [GKZ94b, Remark 1.8]. We denote this by {EA(c) = 0}.

Remark 3.2.29. A relevant case in physics is where f = F is the second Symanzik polyno-
mial. The singular locus in this specialization is closely related to the Landau discriminant
from [MT22]. Feynman integrals in the Lee–Pomeransky representation were studied using
GKZ theory in [dlC19]. There, f = U + F is the sum of the first and second Symanzik
polynomial.
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The fact that the dimension of the space of local solutions of HA(κ) is constant on an open
dense subset of CA follows from Theorem 3.2.28 by observing that χ(X(c)) is constant on
an open dense subset. We have related this open condition to the principal A-determinant in
Subsection 3.2.1, and described the generic Euler characteristic as the volume of a polytope
NP(h), see Theorem 3.2.7. It is not surprising that the same polytope appears also here.

Theorem 3.2.30. Let c∗ ∈ CA be such that EA(c
∗) ≠ 0 and let κ be non-resonant. For any

simply connected domain Uc∗ ∋ c
∗ such that Uc∗ ∩ {EA(c) = 0} = ∅, we have that

dimC (Vc∗) = dimC(c) (RA/(RA ⋅HA(κ))) = ∣χ(X(c
∗
))∣ = vol (NP(h)) ,

where Vc∗ is defined as in (3.2.6), and NP(h) is the Newton polytope of h from (3.2.12).

Remark 3.2.31. The volume vol (NP(h)) in Theorem 3.2.30 has to be intended as the
volume form induced by the lattice spanned by the row-space of the matrix A, see [GKZ94a,
§5.3]. If A does not span the full-dimensional lattice Zn+ℓ, in order for the equalities in
Theorem 3.2.30 to hold true, one needs to multiply the numbers dimC(c) (RA/(RA ⋅HA(κ)))

and vol (NP(h)) by the index of the lattice spanned by A inside Zn+ℓ.

Example 3.2.32. Using the command holonomicRank in Macaulay2, we check that the
holonomic ideal HA(κ) from Example 3.2.26 is 6. This number coincides with the degree of
the toric ideal IA associated to the matrix A from (3.2.40), and the normalized volume of
the hexagonal pyramid from Figure 3.7.

We point out that, for any choice of parameters κ = (−ν, s)⊺, we have the inequality

dimC(c) (RA/(RA ⋅HA(κ))) ≥ vol(NP(h)), (3.2.41)

see for instance [SST00, Theorem 3.5.1]. Equality holds for non-resonant parameters, but
the holonomic rank may jump up for special κ. The Euler characteristic of X(c∗) may drop
for special choices of the coefficients c∗; this is what happened in Example 3.2.8.

Following [MH22, Sections 3, 4], we now explain which DA-modules are behind these
constructions. This will lead to an explicit connection between this subsection and Subsection
3.2.1. Define

X ∶= {(x, c) ∈ (C∗)n ×CA
∣

ℓ

∏
i=1
fi(x; c) ≠ 0} (3.2.42)

and let π∶X → CA be the projection to CA. For c ∈ CA, the fiber of π is X(c). Note that
Hn(X(c), ω(c)) depends rationally on the ci. Denote by Hn the n-th cohomology group of
the relative de Rham complex (Ω●

X /CA ,∇x), where Ωk
X /CA is the sheaf of relative differential k-

forms. This sheaf is locally defined by its sections ∑∣I ∣=k s(x, c)dxI , where s(x, c) are sections
of the structure sheaf OX . The differential ∇x = dx +dlogx(f

sxν) only takes derivatives with
respect to x. For every c∗ ∈ CA, there is an evaluation map

evc∗ ∶ H
n
c∗ →Hn

(X(c∗), ω(c∗)). (3.2.43)

We now recall that Hn is naturally endowed with the structure of a DA-module via the
Gauß–Manin connection ∇GM ∶= ∇c = dc + dlogc(f

sxν).

Denote by MA(κ) the regular holonomic DA-module DA/HA(κ).
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Proposition 3.2.33 ([MH22]). For non-resonant κ (see Definition 3.2.27) and s ∉ Zℓ, the
morphism

MA(κ)
≅
Ð→H

n, [1]↦ [dx
x
]

is an isomorphism of DA-modules.

The isomorphism from Proposition 3.2.33 explains how to use GKZ theory to obtain
relations between the generators of VΓ. It extends [1] ↦ [dx

x
] DA-linearly. Explicitly, [P ] ∈

MA(κ) is sent to P ●[dx
x ], where ∂α acts on an element [ϕ(c)] ∈Hn as follows (cf. [MHT22]):

∂α ● [ϕ(c)] =

⎡
⎢
⎢
⎢
⎢
⎣

∂α (ϕ(c)) +
⎛

⎝

ℓ

∑
j=1

sj
xα

fj(x; c)
⎞

⎠
ϕ(c)

⎤
⎥
⎥
⎥
⎥
⎦

. (3.2.44)

The image of an element in HA(κ) is zero in Hn by Proposition 3.2.33. Applying the
evaluation map (3.2.43) gives a zero-element in Hn(X(c∗), ω(c∗)).

Example 3.2.34. The image of the differential operator (Aθ − κ)i under the isomorphism
in Proposition 3.2.33 is

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

ℓ

∑
j=1

sjf
−1
j

∂fj

∂xi
xi + νi

⎞

⎠

dx
x

⎤
⎥
⎥
⎥
⎥
⎦

,

which is precisely the zero-cocycle seen at the end of the proof of Lemma 3.2.25.

3.2.4. Numerical methods
In previous subsections, we have focused on symbolic techniques for computing with gen-

eralized Euler integrals. We now switch gears and present some ideas for the use of numerical
methods. We believe that integrating these different approaches will be of key importance
to compute larger instances. A first, well-known observation is that the dimension of our
vector spaces can be computed by solving a system of rational function equations. Fix
f ∈ C[x,x−1]ℓ, s ∈ Cℓ, and ν ∈ Cn, and let X be as in (3.2.2). We say that x∗ ∈X is a complex
critical point of log(f s xν) on X if ω(x∗) = 0, where ω is the 1-form defined in (3.2.3).

Theorem 3.2.35. Fix f ∈ C[x,x−1]ℓ and let X be as in (3.2.2). The integer (−1)n ⋅ χ(X)
equals the number of complex critical points of log(fs xν) on X, for generic s ∈ Cℓ, ν ∈ Cn.

Proof. Since X is smooth and very affine, this follows from [Huh13, Theorem 1]. ∎

Concretely, one obtains the Euler characteristic of X by counting complex solutions of

s1 ⋅
∂f1
∂xi

f1
+ ⋯ +

sℓ ⋅
∂fℓ

∂xi

fℓ
+
νi

xi
= 0, i = 1, . . . , n. (3.2.45)

This has been applied to count master integrals in [MT22], and to compute Euler characteris-
tics of point configuration spaces in [ABF+23, ST21] with a view towards physics and statis-
tics. One way to solve the equations in (3.2.45) is by using numerical homotopy methods. For
the computations in this subsection, we use the Julia package HomotopyContinuation.jl
(v2.6.3) [BT18].

Example 3.2.36. We compute the Euler characteristic of the very affine surface X from
Example 3.2.8, with f as in (3.2.14). The equations in (3.2.45) are generated in Julia as
follows:
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using HomotopyContinuation
@var x y s ν[1:2]
f = -x*y^2 + 2*x*y^3 + 3*x^2*y - x^2*y^3 - 2*x^3*y + 3*x^3*y^2
L = s*log(f) + ν[1]*log(x) + ν[2]*log(y)
F = System(differentiate(L,[x;y]), parameters = [s;ν])

The variable F is viewed as a system of two equations in two unknowns x and y, parameter-
ized by s, ν[1], and ν[2]. Solving for generic parameter values is done using the command
monodromy_solve(F). The output confirms that there are 6 complex solutions. We encour-
age the reader to check that the analogous computation with f as in (3.2.15) returns only 2
solutions. The equations (3.2.45) in this case coincide with [ST21, Equation (5)] for m = 5.
For a tutorial on solving (3.2.45) in Julia, see [ST21, Section 3] and the references therein.

Another use for these tools is the computation of C-linear relations among the generators

(Ia,b ∶ [Γ]z→ ∫Γ
fs+a xν+b dx

x
) ∈ HomC(Hn(X,ω),C ) (3.2.46)

of our vector space VΓ, discussed in Subsection 3.2.1. We present the ideas in the case where
n = 1 and leave general methodology for future research. In particular, we reproduce the
relation found in Example 3.2.10. We start with a discussion on numerically computing the
integral Ia,b(Γ). Since Γ is a twisted 1-cycle, it is encoded by a singular 1-cycle ∆ and a choice
of branch ϕ for the multi-valued function f sxν . We take ∆ to be a triangle ABC, i.e., a sum
AB +BC +CA of line segments, with A,B,C ∈X ⊂ C∗. The cycle Γ is

Γ = AB ⊗C ϕAB + BC ⊗C ϕBC + CA⊗C ϕCA, (3.2.47)

where ϕAB ∶ UAB → C is a section of L∨ω, defined on the open neighborhood UAB of the line
segment AB, and similarly for ϕBC and ϕCA. Note that ϕAB is completely determined by
its value ϕAB(A) at A, and ϕAB(B) = ϕBC(B), ϕBC(C) = ϕCA(C). Moreover, we also have
ϕCA(A) = ϕAB(A) because Γ is a twisted cycle. Hence, the data specifying Γ are the points
A,B,C, and the complex number ϕAB(A). The integral is

∫Γ
f s+a xν+b dx

x
= ∫

AB
ϕAB(x)f

axb dx
x
+ ∫

BC
ϕBC(x)f

axb dx
x
+ ∫

CA
ϕCA(x)f

axb dx
x
,

where the three integrals on the right are usual complex integrals over singular 1-chains
on X, with a single-valued integrand. These can be approximated using the trapezoidal rule.
Fixing a large integer N and writing xi = (N − 1)−1 ⋅ ((N − i)A + (i − 1)B), we get

∫
AB

ϕAB(x)f
axb dx

x
≈
(B −A)

N − 1
(
ϕAB(x1)ψ1

2
+

N−1
∑
i=2

ϕAB(xi)ψi +
ϕAB(xN)ψN

2
) , (3.2.48)

where ψi ∶= f(xi)
axb−1

i is the evaluation of the single-valued part of the integrand at xi.

To evaluate (3.2.48), we need to evaluate the section ϕAB at the nodes xi ∈ AB of the
numerical integration. To this end, recall that ϕAB satisfies a differential equation

dϕAB(x) − ω ⋅ ϕAB(x)

dx
= 0, x ∈ AB, (3.2.49)

with initial condition specified by ϕAB(x1) = ϕAB(A). One can use any standard method for
numerically solving ODEs to approximate ϕAB(xi), i = 1, . . . ,N. Furthermore, ϕAB(xN) =

ϕAB(B) can be used as the initial condition for the next integral over the line segment BC.



106 Particle physics and very affine varieties

When the parameters s, ν are rational numbers, we can make use of the fact that the
graph (x,ϕAB(x)), x ∈ AB, satisfies an algebraic equation F (x, y) = 0. Indeed, let k be
the smallest integer such that kν ∈ Zn and ks ∈ Zℓ. We have F (x,ϕAB(x)) = ϕAB(x)

k −

f(x)ksxkν = 0. Consider the algebraic curve C = {(x, y) ∈ (C∗)2 ∣ yk − f(x)ksxkν = 0} with
marked points Z = {(x,0) ∣ f(x) = 0}. There is a degree k covering

π ∶ C ∖Z Ð→X, (x, y)↦ x.

Suppose that, using (3.2.49), we have computed an approximation ỹi for yi ∶= ϕAB(xi) ∈

π−1(xi). We can use ỹi as a starting point for Newton iteration on the nonlinear equation
F (xi, y) = 0 in the variable y. If ỹi is a reasonable approximation, the iteration will converge
to yi, and reduce the approximation error of our numerical ODE solver significantly in each
discretization step. This is illustrated in Figure 3.8. The procedure is much like the standard
predict-and-correct technique used in polynomial homotopy continuation [AG12, Chapter 3].

Suppose we know a basis of twisted cycles [Γ1], . . . , [Γχ] for H1(X,ω), where Γi are as

Figure 3.8. Estimating ϕAB(xi) using a numerical ODE solver (yellow) with initial
condition at x1 = A. Results are improved by adding Newton iterations in each step
(green).

in (3.2.47) and χ = ∣χ(X)∣. Given χ + 1 cocycles

[fa(1)xb(1) dx
x
] , . . . , [fa(χ+1)

xb(χ+1) dx
x
] ∈ H1

(X,ω),

we would like to compute a C-linear relation between the corresponding Ia(j),b(j) from
(3.2.46). Assume

Mij ∶= Ia(j),b(j)(Γi) = ⟨[f
a(j)xb(j) dx

x
] , [Γi]⟩ ∈ C

is given by the perfect pairing (3.2.10). These are approximated numerically using the tech-
niques outlined above. We then arrange these numbers in a matrix M = (Mij)1≤i≤χ,1≤j≤χ+1.

Proposition 3.2.37. Any vector (c1, . . . , cχ+1) in the kernel of M, viewed as a linear map
Cχ+1 → Cχ, gives a linear relation ∑χ+1

j=1 cj ⋅ Ia(j),b(j) = 0.

Proof. For any twisted cycle [Γ] = d1[Γ1] +⋯ + dχ[Γχ] we have

χ+1
∑
j=1

cj Ia(j),b(j)(Γ) =
χ

∑
i=1

χ+1
∑
j=1

dicjIa(j),b(j)(Γi) =

χ

∑
i=1
di

χ+1
∑
j=1

cjMij = 0. ∎
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Example 3.2.38. Let f = (x − 1, x − 2), s = (1
2 ,

1
2) and ν = 1

2 be as in Examples 3.2.2
and 3.2.10. The green cycles in Figure 3.6 form a basis for H1(X,ω). We replace them by
triangles Γ1,Γ2 as in (3.2.47). These are specified by the data

A1 =
1
2 +
√
−1, B1 =

1
2 −
√
−1, C1 = 3, ϕA1B1(A1) = −1.436744 + 0.435011

√
−1,

A2 = −1, B2 =
3
2 +
√
−1, C2 =

3
2 −
√
−1, ϕA2B2(A2) = −2.449490

√
−1.

We integrate against the cocycles [fa(j)xb(j) dx
x ], j = 1, . . . ,3, with a(1) = (−1,0), a(2) = (0,−1),

a(3) = (0,0) and b(1) = 1, b(2) = 1, b(3) = 0. We do this using an implementation in Julia of
the ideas discussed above. The code can be found in [AFST22, Appendix B]. Here is how to
use it in this particular example:

f = x -> [x-1; x-2]
s = [1/2;1/2]; ν = 1/2; N = 1000; k = 2;
ω = x -> s[1]/(x-1) + s[2]/(x-2) + ν/x
cocycles = [[[-1;0],1], [[0,-1],1], [[0,0],0]]

A1 = 1/2+im; B1 = 1/2-im; C1 = 3+0im
phiA1B1_at_A1 = A1^ν*prod(f(A1).^s)
I1 = integrate_loop(A1,B1,C1,phiA1B1_at_A1,N,f,ω,s,ν,k,cocycles)

A2 = -1+0im; B2 = 3/2+im; C2 = 3/2-im
phiA2B2_at_A2 = A2^ν*prod(f(A2).^s)
I2 = integrate_loop(A2,B2,C2,phiA2B2_at_A2,N,f,ω,s,ν,k,cocycles)

The variable I1 contains the first row (M11 M12 M13) of our 2 × 3 matrix M. The second
row is I2. We obtain the matrix

M = (
−3.496

√
−1 4.144

√
−1 −0.648

√
−1

3.496 0.648 −4.144 ) ,

whose kernel is spanned by (1
2 ,

1
2 ,

1
2)
⊺. This is the relation seen in Example 3.2.10.

3.3. Conclusions
We conclude Section 3.2 with some pertinent research questions. Our final long-term goal

is to fully connect the various previously discussed approaches and to provide new methods
for computing integral bases in physics and beyond.

Allowing integer shifts in the exponents of the tuple f = (f1, . . . , fℓ) of Laurent polynomi-
als is one way to produce a finite-dimensional vector space of integrals of type as in (3.0.2).
An integral basis is indexed by a subset of the integer lattice Zℓ. A long-term goal is to
develop a combinatorial procedure to compute such integral basis. A natural case to begin
with is resumed in the following:

Problem 3.3.1. Describe an integral basis for vector spaces of integrals as in (3.0.2) when
the tuple f = (f1, . . . , fℓ) consists of linear forms.

This situation looks promising to disclose intriguing combinatorial structures even in the
planar case, i.e., n = 2, where the dimension of the basis equals the number of bounded
chambers in the lines arrangement determined by the linear forms in f . This connection
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reveals a fascinating correspondence between bounded chambers and basis integrals that we
aim to understand at a deeper level.

An additional useful point to consider in scattering amplitudes is that each Feynman
integral comes with a Feynman diagram associated with it, as explained in Appendix A. In
the physics literature, it is claimed the existence of a relation between the graph and the
master integrals. More precisely, in some cases where a basis is known, it is conjectured that
a basis can be computed from the subgraphs of the graph one starts with, e.g. [BGL+18].
Therefore we propose the following

Problem 3.3.2. Characterize the family of Feynman graphs whose subgraphs are in bijection
with the master integrals. Formulate an analogous version of this fact for generalized Euler
integrals where the graph is replaced by the very affine variety X.

The mildly noncommutative setting of D-modules provides new methods to compute
linear relations among integrals. In Subsection 3.2.2 we learned that the Mellin transform not
only plays a central role in understanding the dimension of the vector space of integrals but
also provides an effective way to generate linear relations between integrals. Alternatively,
the same relation can be computed using homological algebra for one of the other vector
spaces, as showed in Subsection 3.2.1. Proposition 3.2.20 provides new insights about the
connection between the relations for these two different vector spaces. A further goal is to
understand this interplay in complete generality:

Problem 3.3.3. Understand the connections between the relations for the vector spaces in
[AFST22], and provide algorithmic methods to compute such relations.
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Chapter 4

Computation with quadrics

The main goal of this chapter is to approach classical problems in algebraic geometry
by using modern techniques, such as relying on symbolic and numerical computations, and
adding points of view and questions coming from different fields, such as algebraic statistics,
real algebraic geometry, and related areas.

This chapter is divided into two main parts: Section 4.1 studies pencils of quadrics,
namely two-dimensional linear subspaces in the space Sn of (real or complex) symmetric
n×n matrices, according to the classification by Segre symbols [HP52], addressing questions
motivated by algebraic statistics and optimization; Section 4.2 revisits a classical problem in
enumerative geometry, namely the count of quadrics in the projective space that are tangent
to nine given figures among points, lines, planes, or quadrics, with the purpose of showing
that the instances of such quadratic surfaces can be fully real.

The common theme of both sections is the study linear spaces of symmetric matrices
with the aim of expanding the comprehension of these matrix spaces by approaching them
from various viewpoints. These objects, although seemingly elementary, possess a substantial
influence and are utilized in a wide range of areas within mathematics. For example, they
constitute spaces of smooth quadrics satisfying specific tangency conditions in enumerative
algebraic geometry; they serve as linear Gaussian or concentration models in the realm
of algebraic statistics; they establish the spectrahedra on which optimization problems are
examined in semidefinite programming; and finally, they encode partially symmetric tensors
in nonlinear algebra. This discussion is also the motivation for writing the volume [MMRS21].

Here are the chapter’s major aspects. Section 4.1 begins by revisiting the history of
the study of pencils of quadrics that lead to the classification by Segre symbols, with a
linear algebra perspective on Theorem 4.1.1. We denote by L−1 the set of the inverses
of all invertible matrices in L. Since we exclude singular pencils, namely the ones with
identically zero determinant, the set L−1 is nonempty. Its closure in P(Sn) is a projective
curve, called the reciprocal curve and denoted PL−1. In Subsection 4.1.1 we prove that, when
L is nonsingular, PL−1 is a rational normal curve, we express its degree in terms of the Segre
symbol σ(L), and determine its prime ideal.

In Subsection 4.1.2 we turn to maximum likelihood estimation for Gaussians. A linear
Gaussian model is a set of multivariate Gaussian probability distributions whose covariance
or concentration matrices are linear combinations of some fixed symmetric matrices. Hence,
when restricting to two-dimensional models, a pencil L plays two different roles in statistics,
depending on whether it lives in the space of concentration matrices (as in [SU10]) or in
the space of covariance matrices (as in [CMR20]). This yields two numerical invariants, the
ML degree mld(L) and the reciprocal ML degree rmld(L). We give formulas for these as
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expressed by Segre symbols in Theorem 4.1.13. Finally, in Subection 4.1.3 we study the
constructible set Grσ in the Grassmannian Gr(2,Sn)reg defined by all nonsingular pencils
with fixed Segre symbol. Its closure Grσ is a variety. We study these varieties and their
poset of inclusions, seen in Figure 4.1.

In Subsection 4.2.1 we move to quadratic surfaces in projective space. We introduce
coordinates for points, lines, planes and quadrics, and derive the polynomials that describe
our tangency conditions. Subsection 4.2.2 is dedicated to the space of complete quadrics,
a variety in P9 × P20 × P9. We determine its prime ideal, we recover Schubert’s triangle as
its multidegree, and we write our tangency conditions in that setting. In Subsection 4.2.3
we argue that Schubert’s triangle is mostly real. We present explicit instances where all
tangent quadrics are real. These instances were found by substantial computations using the
software HomotopyContinuation.jl [BT18]. Our computations and the certification process
are described in Subsection 4.2.4. To conclude, Subsection 4.2.5 describes the Schubert’s
pyramid. It gives the numbers pαℓβhγqδ of quadrics through α points that are tangent to
β lines, γ planes and δ quadrics; see Figure 4.3. At the top of this pyramid lives q9 =
666841088, namely the number of quadrics tangent to nine given quadrics in P3. We discuss
the associated polynomial systems, and we state two conjectures about their reality.

4.1. Pencils of quadrics
A pencil of quadrics is a two-dimensional linear subspace L in the space Sn of (real or

complex) symmetric n×n matrices. It can also be interpreted as a point in the Grassmannian
Gr(2,Sn), and it specifies a line PL in the projective space P(Sn) ≃ P(

n+1
2 )−1. The group

GL(n) acts on Sn by congruence:

GL(n) × Sn
→ Sn , (g,A) ↦ gAgT , (4.1.1)

and this induces an action on Gr(2,Sn). We say that two pencils are isomorphic if they lie
in the same GL(n)-orbit.

Fix a pencil L with basis {A,B}. The determinant det(L) = det(λA + µB) is well-
defined up to the action of GL(2) by changing basis in L. The zeros of this binary form are
a divisor of degree n in the line P1, well-defined up to isomorphism of P1. We exclude pencils
L that are singular, meaning that the determinant det(L) is identically equal to zero. The
singular pencils form a subvariety Gr(2,Sn)sing in the Grassmannian. We are interested in
a natural stratification of the open set of all regular pencils:

Gr(2,Sn
)

reg
= Gr(2,Sn

) /Gr(2,Sn
)

sing.

Each stratum is indexed by a Segre symbol σ. This is a multiset of partitions whose parts
add up to n in total. One exception: the singleton [(1,1, . . . ,1)] is not a Segre symbol (see
Remark 4.1.4). The number S(n) of Segre symbols was already of interest to Arthur Cayley
in 1855. In [Cay55, p. 316], he derived the generating function

∞

∑
n=1

S(n)xn
= ∏

k≥1

1
(1 − xk)P (k)

−
1

1−x
= 2x2

+ 5x3
+ 13x4

+ 26x5
+ 57x6

+ 110x7
+ ⋯,

where P (k) is the number of partitions of the integer k. The two Segre symbols for n = 2
are [1,1] and [2]. For n = 3 and n = 4 they are shown in Figure 4.1.

The Segre symbol σ = σ(L) of a given pencil L can be computed as follows. Pick a
basis {A,B} of L, where B is invertible, and find the Jordan canonical form of AB−1. Each
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eigenvalue of AB−1 determines a partition, according to the sizes of its Jordan blocks. Then
σ is the associated multiset of partitions. It turns out that σ does not depend on the choice
of basis {A,B}. For the relevant background in linear algebra see [DE95, Tho91, Uhl76].

The role of Segre symbols in projective geometry can be stated as follows.

Theorem 4.1.1 (Weierstrass-Segre). Two pencils of quadrics in Sn are isomorphic if and
only if their Segre symbols agree and their determinants define the same multiset of n points
on the projective line P1, up to isomorphism of P1.

Example 4.1.2 (n = 2). All pencils L are regular. There are two GL(2)-orbits, given by
the rank of a matrix X that spans L⊥ = {X ∈ S2 ∶ trace(AX) = trace(BX) = 0}. If X has
rank 2 then det(L) has two distinct roots in P1 and the Segre symbol is σ(L) = [1,1]. If X
has rank 1 then it is a double root in P1 and σ(L) = [2].

We learned about Theorem 4.1.1 from an unpublished note by Pieter Belmans, titled
Segre symbols, which credits the 1883 PhD thesis of Corrado Segre. It appears in the text-
books on algebraic geometry by Dolgachev [Dol12, §8.6.1] and Hodge-Pedoe [HP52, §XIII.10].
The idea goes back to at least the 1850s, in works of Cayley [Cay55] and Sylvester [Syl51].

One advantage of using Segre symbols relies in the fact that they determine a basis of
canonical representatives for the pencil they index. To define such a basis, we first fix the field
to be C and identify symmetric n × n matrices A with quadratic forms xAxT in unknowns
x = (x1, . . . , xn). Notice that the (n+1

2 )-dimensional vector space Sn is also equipped with
the trace inner product

Sn
× Sn

→ C, (A,B)↦ trace(AB).

The group GL(n) acts on quadratic forms by linear changes of coordinates, via x ↦ xg.
This corresponds to the action (4.1.1) of GL(n) on symmetric matrices.

Let L = C{A,B} be a regular pencil in Gr(2,Sn), with det(B) /= 0. The polynomial ring
C[λ] in one variable λ is a principal ideal domain. The cokernel of the matrix A − λB is a
module over this principal ideal domain (PID). Consider its elementary divisors

(λ − α1)
e1 , (λ − α2)

e2 , . . . , (λ − αs)
es . (4.1.2)

Here e1, . . . , es are positive integers whose sum equals n. The list (4.1.2) is unordered and
its product is det(L) = ±det(A − λB). The complex numbers αi are the eigenvalues of the
pair (A,B). They form a multiset of cardinality n in P1.

Suppose there are r distinct eigenvalues αi. We have r ≤ s ≤ n. The exponents ei

corresponding to one fixed eigenvalue form a partition. This gives a multiset of r partitions,
with s parts in total, where the sum of all parts is n. This multiset of partitions is the Segre
symbol σ = σ(L). It is thus visible in (4.1.2). We now paraphrase Theorem 4.1.1 using the
elementary divisors of the matrix A − λB.

Corollary 4.1.3. Consider two quadrics xAxT and xBxT with det(B) /= 0. There exists a
change of coordinates x ↦ xg which transforms them to xCxT and xDxT if and only if the
matrices A − λB and C − λD have the same elementary divisors.

Proof. For a textbook proof of this classical fact see [HP52, Theorem 1, p. 278]. ∎

Corollary 4.1.3 is used to construct a canonical form for pencils. For e ∈ N and α ∈ C, we
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define a pair of symmetric e × e matrices by filling their antidiagonals:

Pe(α) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 α
0 0 ⋯ α 1
⋮ ⋮ ⋰ ⋰ ⋮

0 α 1 ⋮ 0
α 1 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Qe =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ⋯ 0 0 1
0 ⋯ 0 1 0
0 ⋯ 1 0 0
⋮ ⋰ ⋮ ⋮ ⋮

1 ⋯ 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.1.3)

The e × e matrix Pe(α) − λQe has only one elementary divisor, namely (λ − α)e.
Let us now start with the list in (4.1.2). For each elementary divisor (λ − αi)

ei we form
the ei × ei matrices in (4.1.3), and we aggregate these blocks as follows:

P =

⎛
⎜
⎜
⎜
⎝

Pe1(α1) 0 ⋯ 0
0 Pe2(α2) ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Pes(αs)

⎞
⎟
⎟
⎟
⎠

and Q =

⎛
⎜
⎜
⎜
⎝

Qe1 0 ⋯ 0
0 Qe2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Qes

⎞
⎟
⎟
⎟
⎠

. (4.1.4)

The matrices A − λB and P − λQ have the same elementary divisors. Hence, by Corollary
4.1.3, the pair (xAxT ,xBxT ) is isomorphic to (xPxT ,xQxT ) under the action by GL(n).
As in Example 4.1.19, every regular pencil L ∈ Gr(2,Sn) has a normal form C{P,Q}, where
the matrices P and Q are defined by the unordered list (4.1.2). Given any Segre symbol σ,
its canonical representative is L = C{P,Q} where α1, . . . , αr are parameters. In what follows,
we often use index-free notation for unknowns, like x = (x, y, z) and (α1, α2, α3) = (a, b, c).

Remark 4.1.4. The canonical representatives of a pencil L also explain why the symbol
[(1,1, . . . ,1)] is not to a Segre symbol. The matrices P,Q corresponding to such partition
would in fact be linearly dependent diagonal matrices that do not span a two dimensional
linear subspace of Sn.

Example 4.1.5 (n = 5). Let σ = [(2,1),2]. The list of elementary divisors equals

(λ − a)2, (λ − a), (λ − b)2.

Our canonical representative (4.1.4) for this class of pencils L is the matrix pair

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 a 0 0 0
a 1 0 0 0
0 0 a 0 0
0 0 0 0 b
0 0 0 b 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The quadrics P = 2axy + y2 + az2 + 2buv + v2 and Q = 2xy + z2 + 2uv define a degenerate
del Pezzo surface of degree four in P4. This surface has two singular points, (0 ∶ 0 ∶ 0 ∶ 1 ∶ 0)
and (1 ∶ 0 ∶ 0 ∶ 0 ∶ 0); their multiplicities are one and three.

Remark 4.1.6. To appreciate Theorem 4.1.1 and Corollary 4.1.3, it helps to distinguish the
two geometric figures associated with a pencil of quadrics, and how the groups GL(2) and
GL(n) act on these. First, there is the configuration of n points in P1 defined by det(L).
This configuration undergoes projective transformations via GL(2) but it is left invariant
by GL(n). Second, there is the codimension 2 variety in Pn−1 defined by the intersection of
the two quadrics in L. This variety undergoes projective transformations via GL(n) but it
is left invariant by GL(2). Hence, combining Theorem 4.1.1 and Corollary 4.1.3, we want
these two geometric figures to be invariant when looking at isomorphic pencils, and this is
possible by acting on pencils with the two groups GL(2) and GL(n).
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In this section, pencils L = C{A,B} are studied by linear algebra over a PID. We use the
relationship between elementary divisors and invariant factors. One can compute these with
the Smith normal form algorithm over C[λ]. We apply this to a specific torsion module,
namely the cokernel of our matrix A − λB.

Fix n and a Segre symbol σ = [σ1, . . . , σr], where each entry is now a weakly decreasing
vector σi = (σi1, σi2, . . . , σin) of nonnegative integers. With this convention, the Segre symbol
σ = [σ1, σ2] in Example 4.1.5, with n = 5, s = 3, r = 2, has σ1 = (2,1,0) and σ2 = (2,0,0).
Write α1, . . . , αr ∈ C for the distinct roots of det(A − λB). Then the elementary divisors are
(λ−αi)

σij for i = 1, . . . , r and j = 1, . . . , n. Only s of these are different from 1. The invariant
factors are

dj ∶=
r

∏
i=1
(λ − αi)

σij for j = 1, . . . , n.

Note that dn ∣dn−1 ∣⋯ ∣d2 ∣d1. The number of nontrivial invariant factors is the maximum
number of parts among the r partitions σi. For instance, in Example 4.1.5, the invariant
factors are d1 = (λ − a)

2(λ − b)2, d2 = λ − a, d3 = d4 = d5 = 1.
The ideal of k × k minors of A − λB is generated by the greatest common divisor Dk of

these minors. The theory of modules over a PID tells us that

Dk ∶=
k

∏
j=1

dn+1−j =
r

∏
i=1
(λ − αi)

σi,n−k+1+⋯+σi,n−1+σi,n . (4.1.5)

The Segre symbol of a pencil L = C{A,B} is determined by the ideal of k × k minors
of A − λB for k = 1, . . . , n. In practice, we use the Smith normal form of A − λB. Observe
that the method introduced above, making use of the Jordan canonical form of AB−1, uses
only linear algebra over C, unlike the Smith normal form. To see that the Jordan canonical
form of AB−1 reveals the Segre symbol, consider the transformation from (A,B) to (P,Q)
in Corollary 4.1.3. This preserves the conjugacy class of AB−1. Therefore, AB−1 and PQ−1

have the same Jordan canonical form. We see in (4.1.4) that Q is a permutation matrix, and
hence so is Q−1. Furthermore, P is already in Jordan canonical form, after permuting rows
and columns, and σ is clearly visible in P .

4.1.1. The reciprocal curve
The object of study of this subsection is the reciprocal curve PL−1 associated to a regular

pencil L. This is defined as the variety in P(Sn) parametrizing the inverses of all invertible
matrices in L. In Theorem 4.1.9 we prove that this is a rational normal curve, express its
degree deg(L−1) in terms of Segre symbols, and give an algorithm for computing generators
of the homogeneous prime ideal defining it.

Example 4.1.7 (n = 3). For the five Segre symbols corresponding to pencils of conics in the
projective plane P2, we have deg(L−1) = 2 in three cases, so PL−1 is a plane conic. In the
other two cases, PL−1 is a line in P5. Here are the homogeneous prime ideals of these curves:

Segre symbol Ideal of the reciprocal curve PL−1 mingens
[1,1,1] ⟨x12, x13, x23, (c−b)x11x22 + (a−c)x11x33 + (b−a)x22x33⟩ (3,1)
[2,1] ⟨x13 , x22 , x23 , x

2
12 + (c − a)x11x33 − 2x12x33 ⟩ (3,1)

[3 ] ⟨x23 , x33 , x13 − 2x22 , x
2
12 − x11x22 ⟩ (3,1)

[(1,1),1] ⟨x12 , x13 , x23 , x11 − x22 ⟩ (4,0)
[(2,1)] ⟨x13 , x22 , x23 , x12 − 2x33 ⟩ (4,0)

The column “mingens” gives the numbers of linear and quadratic generators.
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Example 4.1.8 (n = 4). Two quadrics P and Q in P3 meet in a quartic curve. There are
13 cases, one for each Segre symbol. Here, x, y, z, u are coordinates on P3.

symbol codims degrees mingens quadrics P,Q variety in P3

[1,1,1,1] 0,0,0 (3,3,5) (6,3) ax2+by2+cz2+du2

x2+y2+z2+u2 elliptic curve

[2,1,1] 1,1,1 (3,2,4) (6,3) 2axy+y2+cz2+du2

2xy+z2+u2 nodal curve

[(1,1),1,1] 3,2,2 (2,2,3) (7,1) a(x2+y2)+cz2+du2

x2+y2+z2+u2 two conics meet twice

[3,1] 2,2,2 (3,1,3) (6,3) 2axz+ay2+2yz+du2

2xz+y2+u2 cuspidal curve

[2,2] 2,2,2 (3,1,3) (6,3) 2axy+y2+2bzu+u2

2xy+2zu twisted cubic with secant

[(2,1),1] 4,3,3 (2,1,2) (7,1) 2axy+y2+az2+du2

2xy+z2+u2 two tangent conics

[4] 3,3,3 (3,0,2) (6,3) 2axu+2ayz+2yu+z2

2xu+2yz twisted cubic with tangent

[2, (1,1)] 4,3,3 (2,1,2) (7,1) 2axy+y2+c(z2+u2)
2xy+z2+u2 conic meets two lines

[(3,1)] 5,4,4 (2,0,1) (7,1) 2axz+ay2+2yz+au2

2xz+y2+u2 conic and two lines concur

[(1,1), (1,1)] 6,4,4 (1,1,1) (8,0) a(x2+y2)+c(z2+u2)
x2+y2+z2+u2 quadrangle of lines

[(1,1,1),1] 8,5,5 (1,1,1) (8,0) a(x2+y2+z2)+du2

x2+y2+z2+u2 double conic

[(2,2)] 7,5,5 (1,0,0) (8,0) 2axy+y2+2azu+u2

2xy+2zu double line and two lines

[(2,1,1)] 9,6,6 (1,0,0) (8,0) 2axy+y2+a(z2+u2)
2xy+z2+u2 two double lines

The bold numbers in the third column show that PL−1 ⊂ P9 is either a line, a plane conic,
or a twisted cubic curve. This is explained by the next theorem, which is our main result in
Subsection 4.1.1.

Theorem 4.1.9. Let L be a regular pencil in Sn with Segre symbol σ = [σ1, . . . , σr]. Then
PL−1 is a rational normal curve of degree d in P(Sn), where d = ∑r

i=1 σi1 − 1 is one less than
the sum of the first parts of the partitions in σ. The ideal of PL−1 is generated by (n+1

2 )−d−1
linear forms and (d2) quadrics in (n+1

2 ) unknowns.

Proof. The curve PL−1 is parametrized by (n+1
2 ) rational functions in one unknown λ, namely

the entries in the inverse of matrix P −λQ, with P and Q as in (4.1.4). We scale each entry
by Dn = ±det(P − λQ) to get a polynomial parametrization by the adjoint of P − λQ.
This is an n × n matrix whose entries are the (n−1) × (n−1) minors of P − λQ. These are
polynomials of degree ≤ n − 1 in λ, which are divisible by the invariant factor Dn−1. Note
that Dn−1 has degree ∑r

i=1∑
n
j=2 σij in λ. Subtracting this from the expected degree n − 1,

we obtain d = ∑r
i=1 σi1 − 1. We remove the factor Dn−1 from each entry of the adjoint.

The resulting matrix (Dn/Dn−1) ⋅ (P − λQ)
−1 also parametrizes PL−1. The entries of that

matrix are polynomials in λ of degree ≤ d. As a key step, we will show that these span the
(d + 1)-dimensional space C[λ]≤d of all polynomials in λ of degree ≤ d.

The inverse of P − λQ is a block matrix, where the blocks are the inverses of the e × e
matrices Pe(α)−λQe in (4.1.3), one for each elementary divisor. A computation shows that
the entry of (Pe(α) − λQe)

−1 in row i and column j is

−(λ − α)i+j−e−2 if i + j ≤ e + 1 and 0 if i + j ≥ e + 2. (4.1.6)
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It follows that the distinct nonzero entries in the n × n matrix (P − λQ)−1 are

±(λ − αi)
−k where 1 ≤ k ≤ σi1 and 1 ≤ i ≤ r. (4.1.7)

The common denominator of these d + 1 = ∑r
i=1 σi1 rational functions in λ is equal to

Dn/Dn−1 = ∏i=1(λ − αi)
σi1 . Multiplying by that common denominator, we obtain d + 1

polynomials in λ of degree ≤ d. Lemma 4.1.10 below tells us that these polynomials are
linearly independent. Hence they span C[λ]≤d ≃ Cd+1.

The proof of Theorem 4.1.9 now concludes as follows. By recording which entries of
(P −λQ)−1 are zero, and which pairs of entries are equal, we obtain (n+1

2 )−d−1 independent
linear forms that vanish on PL−1. We know that there exist linear forms ui in the matrix
entries which evaluate to λi for i = 0,1,2, . . . , d. The (d2) quadrics that vanish on PL−1 are
the 2 × 2 minors of the 2 × d matrix

⎛
⎜
⎝

u0 u1 u2 ⋯ ud−1
u1 u2 u3 ⋯ ud

⎞
⎟
⎠

. (4.1.8)

We have thus constructed an isomorphism between our curve PL−1 and the rational normal
curve {(1 ∶ λ ∶ ⋯ ∶ λd)}, whose prime ideal is given by (4.1.8). ∎

Notice that the final part of the proof gives an algorithm for computing generators of the
homogeneous prime ideal that defines the reciprocal curve.

Lemma 4.1.10. A finite set of distinct rational functions (λ−αj)
−sij , each a negative power

of one of the expressions λ − α1, . . . , λ − αr, is linearly independent.

Proof. We use induction on r. The base case is r = 1. We claim that (λ−α)−s1 , . . . , (λ−α)−sn

are linearly independent when 0 < s1 < ⋯ < sn. Suppose

k1(λ − α)
−s1 + ⋯ + kn(λ − α)

−sn = 0 for some k1, . . . , kn ∈ C.

Clearing denominators, we obtain k1(λ − α)
sn−s1 +⋯ + kn = 0. Setting λ = α we find kn = 0.

Repeating this computation n times, we conclude k1 = k2 = ⋯ = kn = 0.
For the induction step from r − 1 to r, we consider distinct negative powers

(λ − α1)
−s1,1 , (λ − α1)

−s1,2 , . . . , (λ − α1)
−s1,n1 ,

⋮ ⋮ ⋮

(λ − αr)
−sr,1 , (λ − αr)

−sr,2 , . . . , (λ − αr)
−sr,nr ,

(4.1.9)

where 0 ≤ si,j < si,j+1 for i = 1, ..., r and j = 1, ..., ni. Consider a linear combination of (4.1.9)
with coefficients k1,1, . . . , kr,nr . Multiplying by (λ − αr)

sr,nr and setting λ = αr, we find
kr,nr = 0. Repeating with (λ −αr)

sr,i for i = nr−1, nr−2, . . . ,1, we get kr,1 = ⋯ = kr,nr = 0. By
the induction hypothesis, the first r−1 rows of (4.1.9) are linearly independent. This proves
that all ki,j are zero. Lemma 4.1.10 follows. ∎

The last paragraph in the proof of Theorem 4.1.9 gives an algorithm for computing
generators of the ideal of PL−1. We show this for our running example.

Example 4.1.11. Let σ = [(2,1),2] as in Example 4.1.5. We have d = σ11 + σ21 − 1 = 3, so
PL−1 is a twisted cubic curve in P14. The inverse of P −λQ satisfies the (62)−3−1 = 11 linear
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forms x13, x14, x15, x22, x23, x24, x25, x34, x35, x55, x12 − x33. The quadratic ideal generators
are u0u2 − u

2
1, u0u3 − u1u2 and u1u3 − u

2
2, where

u0 = (a − b)x11 − 2x12 + (a − b)x44 + 2x45 ,
u1 = (a2 − ab)x11 − (a + b)x12 + (ab − b

2)x44 + (a + b)x45 ,
u2 = (a3 − a2b)x11 − 2abx12 + (ab

2 − b3)x44 + 2abx45 ,
u3 = (a4 − a3b)x11 + (a

3 − 3a2b)x12 + (ab
3 − b4)x44 + (3ab2 − b3)x45.

Note that x11 = −(λ − a)
−2, x12 = (λ − a)

−1, x44 = −(λ − b)
−2, x45 = (λ − b)

−1.

4.1.2. Maximum likelihood degrees
Let Sn

≻0 denote the open convex cone of positive definite real symmetric n × n matrices.
For any fixed S ∈ Sn, we consider the following log-likelihood function:

ℓS ∶ Sn
≻0 → R, M ↦ log(det(M)) − trace(SM). (4.1.10)

We seek to compute the critical points of ℓS restricted to a smooth subvariety of Sn. Here,
by a critical point we mean a nonsingular matrix M in the subvariety whose normal space
contains the gradient vector of ℓS at M . This is an algebraic problem because the (n+1

2 )
partial derivatives of ℓS are rational functions.

The determinant and the trace of a square matrix are invariant under conjugation. This
implies the following identity for all invertible n × n matrices g:

ℓg−1S(g−1)T (g
TMg) = log(det(gTMg)) − trace(g−1SMg) = ℓS(M) + const. (4.1.11)

Let L be a linear subspace of Sn, and fix a generic matrix S ∈ Sn. The ML degree mld(L)
is the number of complex critical points of ℓS on L. The reciprocal ML degree rmld(L) of L
is the number of complex critical points of ℓS on L−1. Both ML degrees do not depend on
the choice of S, as long as S is generic. The ML degrees are invariant under the action of
GL(n) by congruence on Sn:

Lemma 4.1.12. The ML degree and the reciprocal ML degree of a subspace L ⊂ Sn are
determined by its congruence class. In particular, this holds for two-dimensional subspaces
L, i.e. for pencils of quadrics.

Proof. Fix g and L. If the matrix S is generic in Sn then so is g−1S(g−1)T . The image of
L under congruence by gT consists of all matrices gTMg where M ∈ L. By (4.1.11), the
likelihood function of S on L agrees with that of g−1S(g−1)T on gTLg, up to an additive
constant. The two functions have the same number of critical points, so the subspaces L and
gTLg have the same ML degree. The same argument works if L is replaced by any nonlinear
variety, such as L−1. ∎

We now focus on pencils (m = 2), and we state our main result in Subsection 4.1.2 which
provides explicit formulas for the number of critical points of the log-likelihood function
when restricting to a pencil of quadrics in terms of Segre symbols.

Theorem 4.1.13. Let L be a pencil with Segre symbol σ = [σ1, . . . , σr]. Then

mld(L) = r − 1 and rmld(L) =
r

∑
i=1
σi1 + r − 3 = deg(L−1

) +mld(L) − 1. (4.1.12)
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For generic subspaces L, with Segre symbol σ = [1, . . . ,1], this implies

mld(L) = deg(L−1
) = n − 1 and rmld(L) = 2n − 3. (4.1.13)

The left formula in (4.1.13) appears in [SU10, Section 2.2]. The right formula in (4.1.13) is
due to Coons, Marigliano and Ruddy [CMR20]. We here generalize these results to arbitrary
pencils L. The proof of Theorem 4.1.13 appears at the end of this subsection.

The log-likelihood function (4.1.10), which appeared already in Chapter 3, is of funda-
mental importance in statistics. The sample covariance matrix S encodes data points in Rn.
The matrix M is the concentration matrix. Its inverse M−1 is the covariance matrix. These
represent Gaussian distributions on Rn. The subspace L encodes linear constraints, either
on M or on M−1. For the former, we get the ML degree. For the latter, we get the recip-
rocal ML degree. These degrees measure the algebraic complexity of maximum likelihood
estimation. In the language in [CMR20, STZ20], mld(L) refers to the linear concentration
model, while rmld(L) refers to the linear covariance model.

If L is a statistical model, then it contains a positive definite matrix. In symbols, L∩Sn
≻0 /=

∅. If this holds and dim(L) = 2 then L is called a d-pencil [Uhl79]. Thus, our numbers mld(L)
and rmld(L) are interesting for statistics when L is a d-pencil. Here, we can take advantage
of the following linear algebra fact.

Lemma 4.1.14. Every d-pencil L can be simultaneously diagonalized over R. After a change
of coordinates, L is spanned by the quadrics ∑n

i=1 aix
2
i and ∑n

i=1 x
2
i .

Proof. We assume n ≥ 3. A pencil is a d-pencil if and only if it has no zeros in the real
projective space Pn−1. This is the Main Theorem in [Uhl79]. It was also proved by Calabi in
[Cal64]. The fact that pencils without real zeros in Pn−1 can be diagonalized is [Uhl79, page
221, (PM)]. It is also Remark 2 in [Cal64, page 846]. ∎

Suppose there are r distinct elements in {a1, . . . , an}. Theorem 4.1.13 implies:

Corollary 4.1.15. If L is a d-pencil then mld(L) = deg(L−1) = r − 1 and rmld(L) = 2r − 3,
where L has r distinct eigenvalues. This holds for all subspaces L that represent statistical
models, since such an L contains positive definite matrices.

The log-likelihood function for our d-pencil L can be written as follows:

ℓS(x, y) =
n

∑
i=1
( log(aix + y) − si(aix + y) ).

Here s1, . . . , sn ∈ R represent data. The MLE is the maximizer of ℓS(x, y) over the cone
{(x, y) ∈ R2 ∶ aix+ y > 0 for i = 1, . . . , n}. Corollary 4.1.15 says that ℓS(x, y) has r − 1 critical
points. One of them is the MLE. The reciprocal log-likelihood is

ℓ̃S(x, y) =
n

∑
i=1
(−log(aix + y) −

si

aix + y
). (4.1.14)

The invariant rmld(L) is the number of critical points (x∗, y∗) of this function with∏n
i=1(aix

∗+

y∗) /= 0, provided s = (s1, . . . , sn) is generic in Rn. Corollary 4.1.15 states that ℓ̃S(x, y) has
2r − 3 complex critical points. One of them is the MLE.

The following is an extension of a conjecture stated by Coons et al. [CMR20, §6].

Conjecture 4.1.16. Let L be a d-pencil with r distinct eigenvalues. There exists s =
(s1, . . . , sn) ∈ Rn such that the function (4.1.14) has 2r − 3 distinct real critical points.
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We can prove this conjecture for small values of n by explicit computation.

Example 4.1.17. Fix the pencil L with n = r and (a1, . . . , an) = (1, . . . , n). For n ≤ 7
we found s ∈ Rn such that the reciprocal log-likelihood function ℓ̃s has 2n − 3 distinct real
critical points. For n = 7 we can take s = (−74

39 ,
13
47 ,

61
40 ,

1
7 ,

23
18 ,−73,−27

43).

We now return to arbitrary Segre symbols σ. While non-diagonalizable pencils L do not
arise in applied statistics, their likelihood geometry is interesting.

Proof of Theorem 4.1.13. By Lemma 4.1.12, we may assume that L is parametrized by
(x, y) ↦ xP − yQ with P and Q as in (4.1.4). For generic S ∈ Sn, we seek the number
mld(L) of critical points in C2 of the following function in two variables:

ℓS(x, y) = log(det(xP − yQ)) − trace(S(xP − yQ)). (4.1.15)

After multiplying by d =∏r
i=1(αix− y), the two partial derivatives of ℓS(x, y) have the form

f(x, y) = λSd + C and g(x, y) = µSd + D. Here λS = −trace(SP ) and µS = trace(SQ) are
constants, and the following are binary forms of degree r − 1:

C =
r

∑
i=1

n

∑
j=1

σij αi

r

∏
k=1,k≠i

(αkx − y) and D = −
r

∑
i=1

n

∑
j=1

σij

r

∏
k=1,k≠i

(αkx − y). (4.1.16)

The variety of critical points of ℓS in C2 is V (f, g)/V (d). We adapt the method intro-
duced in [CMR20] to enumerate this set. Let F (x, y, z) and G(x, y, z) denote the homoge-
nizations of f and g with respect to z. Both F and G define curves of degree r in P2. Since
F and G do not share a common component, we can apply Bézout’s Theorem to count their
intersection points. This tells us that

mld(L) = r2
− I[0∶0∶1](F,G) − ∑

q∈V (F,G,z)

Iq(F,G). (4.1.17)

The negated expressions are the intersection multiplicities of F and G at the origin and on
the line at infinity. By computing these two quantities, we obtain

mld(L) = r2
− (r − 1)2 − r = r − 1.

The proof of the second formula in (4.1.12) is analogous but the details are more delicate.
We present an outline. The log-likelihood function for L−1 equals

ℓ̃S(x, y) = − log (
r

∏
i=1
(αix − y)

σi1+⋯+σin) −
r

∑
i=1

σi1

∑
j=1

s̃ij
xj−1

(αix − y)j
,

where the s̃ij are linear combinations of the entries in the matrix S. This is obtained by
replacing the matrix xP − yQ in (4.1.15) with its inverse. We find

ℓ̃Sx = −
r

∑
i=1

n

∑
j=1

σijαi

αix − y
+

r

∑
i=1

σi1

∑
j=1

s̃ij
(j − 1)xj−2(αix − y) − j x

j−1αi

(αix − y)j+1 ,

ℓ̃Sy =
r

∑
i=1

n

∑
j=1

σij

αix − y
+

r

∑
i=1

σi1

∑
j=1

s̃ij
j xj−1

(αix − y)j+1 .

(4.1.18)

We claim that the number of common zeros of the two partial derivatives ℓ̃Sx and ℓ̃Sy in
C2/V (d) is equal to φ + r − 3 where φ = ∑r

i=1 σi1 = deg(L−1) + 1,
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Clearing denominators in (4.1.18) yields polynomials −d′C + U and −d′D + V , where
d′ = ∏r

i=1(αix − y)
σi1 , the binary forms U,V have degree φ + r − 2, and C,D are precisely

as in (4.1.16). Hence deg(d′) = φ and deg(C) = deg(D) = r − 1. As before, these are sums
of binary forms in consecutive degrees. We use (4.1.17) to count their zeros in P2. We find
(φ + r − 1)2 − (φ + r − 2)2 − (φ + r) = φ + r − 3 ∎

Example 4.1.18 (n = 5). Let σ = [(2,1),2] as in Example 4.1.5. The ML degrees are
mld(L) = 1 and rmld(L) = 3. Restricting the log-likelihood function to L gives

ℓS = log((ax − y)3(bx − y)2) + 2s12(ax − y) + s22x + s33(ax − y) + 2s45(bx − y) + s55x.

Its two partial derivatives are rational functions in x and y. Equating these to zero, we find
that ℓS has a unique critical point (x∗, y∗) in L. Its coordinates are

x∗ = (4(a − b)s12 + 5s22 + 2(a − b)s33 − 6(b − a)s45 + 5s55 ) /∆,
y∗ = (4a(a − b)s12 + (2a + 3b)s22 + 2a(a − b)s33 + 6b(b − a)s45 + (2a + 3b)s55 )/∆,
∆ = (−s22 + 2(a − b)s45 − s55) ⋅ (2(a − b)s12 + s22 + (a − b)s33 + s55).

The restriction of the log-likelihood function to the reciprocal variety L−1 is

ℓ̃S(x, y) = −log((ax − y)3(bx − y)2) − s11 x

(ax − y)2
+

2 s12
ax − y

+
s33

ax − y
−

s44 x

(bx − y)2
+

2 s45
bx − y

.

The two partial derivatives have 3 zeros, expressible in radicals in a, b, s11, . . . , s45.

4.1.3. Strata in the Grassmannian
In this subection we study the constructible set defined by a fixed Segre symbol:

Grσ = {L ∈ Gr(2,Sn
)

reg
∶ σ(L) = σ }. (4.1.19)

Its closure Grσ is a variety. We study these varieties and their poset of inclusions, seen in
Figure 4.1. This extends the stratification of Gr(2,Rn) by matroids, see [GGMS87]. Indeed,
if L consists of diagonal matrices then the Segre symbol σ(L) specifies the rank 2 matroid
of L, up to permuting the ground set {1,2, . . . , n}.

Example 4.1.19 (n = 3). five strata Grσ in the Grassmannian Gr(2,S3):

symbol codim degrees P Q variety in P2

[1,1,1] 0 (2,2,3) ax2+by2+cz2 x2+y2+z2 four reduced points
[2,1] 1 (2,1,2) 2axy+y2+bz2 2xy + z2 one double point, two others
[3 ] 2 (2,0,1) 2axz+ay2+2yz 2xz + y2 one triple point, one other

[(1,1),1] 2 (1,1,1) ax2+ay2+bz2 x2+y2+z2 two double points
[(2,1)] 3 (1,0,0) 2axy+y2+az2 2xy + z2 quadruple point

For each Segre symbol σ, we display codim(Grσ), the triple of degrees deg(L−1), mld(L),
and rmld(L), the basis {P,Q} from Section 4.1, and its variety in P2. Here, x, y, z are
coordinates on P2, and a, b, c are distinct nonzero reals. This accounts for all regular pencils.
A pencil is singular if P and Q share a linear factor or if they are generated by two quadrics
that are both unions of two lines from the same pencil of lines, see [Kle97] for more details.

We now define a partial order on the set Segren of all Segre symbols for fixed n. If σ and
τ are in Segren then we say that σ is above τ if one of the following conditions hold:
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i. ∣σ∣ > ∣τ ∣ and τ is obtained from σ by replacing two partitions σi, σj by their sum; or

ii. ∣σ∣ = ∣τ ∣ and σ and τ differ in precisely one partition, with index i, and τi ⊲ σi in the
dominance order on partitions.

The partial order on Segren is the transitive closure of the relation “is above”. The top
element of our poset is [1,1, . . . ,1], and the bottom element is [(2,1, . . . ,1)]. The Hasse
diagrams for n = 3,4 are shown in Figure 4.1.

[1,1,1,1]

[2,1,1]

[(1,1),1,1] [3,1] [2,2]

[(2,1),1] [4] [2, (1,1)]

[(3,1)] [(1,1), (1,1)]

[(1,1,1),1] [(2,2)]

[(2,1,1)]

[1,1,1]

[2,1]

[3] [(1,1),1]

[(2,1)]

Figure 4.1. The posets of all Segre symbols for n = 3 (left) and n = 4 (right).

We wish to study the strata Grσ in (4.1.19). Recall that Grσ is the constructible subset
of Gr(2,Sn) whose points are the pencils L with σ(L) = σ. Its closure Grσ is a subvariety of
the Grassmannian Gr(2,Sn). Its defining equations can be written either in the 1

8(n+2)(n+
1)n(n − 1) Plücker coordinates, or in the (n + 1)n Stiefel coordinates which are the matrix
entries in a basis {A,B} of L. Depending on the choice on the coordinates, we may refer to
the strata Grσ as Plücker or Stiefel strata, respectively.

Consider the related Jordan stratification. For each σ ∈ Segren, the Jordan stratum Joσ

is the set of n×n matrices whose Jordan canonical form has pattern σ. Its closure Joσ is an
affine variety in Cn×n. Its defining prime ideal consists of homogeneous polynomials in the
entries of an n × n matrix X = (xij).
Theorem 4.1.20. Our poset models inclusions of both Grassmann strata and Jordan strata.
That is, σ ⪰ τ in Segren if and only if Grσ ⊇ Grτ if and only if Joσ ⊇ Joτ .

The codimensions of the Jordan strata generally differ from those of the Grassmann
strata. While the Joσ are familiar from linear algebra [DE18], the Grσ capture the geometry
of the varieties listed on the right in Examples 4.1.19 and 4.1.8. The codimensions are ≥ 1,
unless σ = [1, . . . ,1] where both strata are dense.
Example 4.1.21 (n = 3). We computed the prime ideals for the Jordan strata in C3×3, for
the Plücker strata in Gr(2,S3) ⊂ P14, and for the Stiefel strata in P5×P5:

symbol Jordan Plücker Stiefel codims degrees
[2,1] 61 61 (6,6)1 1,1,1 6,6, [6,6]
[3 ] 21,31 421 (2,4)1, (3,3)1, (4,2)1 2,2,2 6,99, [6,15,6]

[(1,1),1] 320 320 (3,3)20 3,2,2 6,36, [4,4,4]
[(2,1)] 29 26 (2,2)6 4,3,3 6,56, [4,12,12,4]
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The sextic in the first row is the discriminant of the characteristic polynomial of X. We
shall explain the last row, indexed by σ = [(2,1)]. The Jordan stratum Joσ has codimension
4 and degree 6. Its ideal is generated by nine quadrics, like x11x31−2x22x31+3x21x32+x31x33.
Under the substitution X = AB−1, these transform into six quadrics in Plücker coordinates,
like p04p14 + p12p14 − p03p15 − p12p23 − 3p02p34 + 2p01p35. Here p01, p02, . . . , p45 denote the 2× 2
minors of

⎛
⎜
⎝

a11 a12 a13 a22 a23 a33
b11 b12 b13 b22 b23 b33

⎞
⎟
⎠

.

The stratum Grσ has codimension 3 in Gr(2,S3) and degree 56 in the ambient P14. The six
Plücker quadrics give six polynomials of bidegree (2,2) in (A,B). These define a variety of
multidegree 4a3 + 12a2b + 12ab2 + 4b3 ∈ H∗(P5 × P5).

Example 4.1.22 (n = 4). The column “codims” in Example 4.1.8 gives the codimensions
of Jordan strata, Plücker strata and Stiefel strata. The last two agree; they quantify the
moduli of quartic curves in P3 listed on the right. We found equations of low degree for the
13 strata. For instance, Jo[4] lies on a unique quadric:

3x2
11 − 2x11x22 − 2x11x33 − 2x11x44 + 8x12x21 + 8x13x31 + 8x14x41 + 3x2

22
−2x22x33 − 2x22x44 + 8x23x32 + 8x24x42 + 3x2

33 − 2x33x44 + 8x34x43 + 3x2
44.

Proof of Theorem 4.1.20. For Segre symbols σ with one partition σ1, the Jordan strata Joσ

are the nilpotent orbits of Lie type An−1. Gerstenhaber’s Theorem [Ger61] states that inclu-
sion of nilpotent orbit closures corresponds to the dominance order ⊲ among the partitions
σ1. This explains the second condition in our definition of “is above” for the poset Segren.
The other condition captures the degeneration that occurs when two eigenvalues come to-
gether. Generally, this leads to a fusion of Jordan blocks, made manifest by adding partitions
σi and σj . For a precise algebraic version of this argument we refer to [Ger61, Theorem 4].

The inclusions of orbit closures are preserved under the map X ↦ AB−1 that links
Stiefel strata to Jordan strata. Furthermore, the Plücker stratification is obtained from the
Stiefel stratification by taking the quotient modulo GL(2). This operation also preserves the
combinatorics of orbit closure inclusions. ∎

We close with formulas for the dimensions of our strata. For each partition σi occurring
in a Segre symbol σ = [σ1, . . . , σr], we write σ∗i = (σ∗i1, . . . , σ∗in) for the conjugate partition.
For instance, if n = 5 and σi = (4,1) then σ∗i = (2,1,1,1).

Proposition 4.1.23. The codimension of the Jordan strata (in Cn×n) and Grassmann strata
(in Gr(2,Sn)) are:

codim(Joσ) =
r

∑
i=1

n

∑
j=1
(σ∗ij)

2
− r and codim(Grσ) =

r

∑
i=1

n

∑
j=1
(
σ∗ij + 1

2
) − r.

Proof. The dimension is the number r of distinct eigenvalues plus the dimension of the
GL(n)-orbit of the general matrix or pencil in the stratum of interest. Thus, the codimension
is the dimension of its stabilizer subgroup minus r. The codimension for Grassmann strata
agrees with the codimension for Stiefel strata, so we may consider pairs of matrices (A,B)
when determining codim(Grσ).

The stabilizer on the left is found in [DE18, Theorem 2.1] or [Ger61, Proposition 8],
using the identity ∑s

k=1(2k − 1) = s2. The stabilizer dimension on the right is calculated in
[DKgS14, Corollary 2.2] for general symmetric matrix pencils. For regular pencils, the case
studied here, the Kronecker canonical form in [DKgS14, eqn. (2.4)] only has H-components.
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Thus the dimension formula in [DKgS14] becomes dA,B = dH + dHH , where dH = 0 and
dHH = ∑i≤i′,λi=λi′

min(hi, hi′). In our notation, this is

∑
i≤k,αi=αk

min(ei, ek) =
r

∑
i=1

n

∑
k=1

kσik =
r

∑
i=1

n

∑
k=1

σik

∑
j=1

k =
r

∑
i=1

n

∑
j=1

σ∗ij

∑
k=1

k =
r

∑
i=1

n

∑
j=1
(
σ∗ij + 1

2
).

In conclusion, our proof consists of specific pointers to the articles [DE18, DKgS14, Ger61].
∎

4.2. Real tangent quadrics
A classical problem in enumerative geometry is the study of characteristic numbers for

families of curves or higher dimensional varieties in a projective space. Such numbers are
the solutions to questions of type:

How many smooth degree d hypersurfaces in Pn are tangent to (n+d
d
) − 1 general linear

spaces of various dimensions?

For instance, characteristic numbers for plane curves count the number of curves in a family
passing through α points and tangent to β lines where α + β equals the dimension of the
family. There are 3264 conics tangent to five given conics in the projective plane P2 and it
is possible to choose a configuration such that all of them are real, [BST20, RTV97].

In this section, we study the analogous tangency question for one dimension higher. The
numbers of tangent quadrics (i.e., quadratic surfaces) were determined by Hermann Schubert
in 1879 [Sch79]. This problem was later translated into a problem about the Chow ring of the
space of complete quadrics. More recently, the space of complete quadrics has proved useful
for studying some classical problems in algebraic statistics related to maximum likelihood
estimation [MMM+20]. Schubert found that the number of quadrics in P3 that are tangent
to nine given quadrics is 666841088. We present a first step toward the problem of deciding
whether there exist nine real quadrics such that all complex solutions are real.

Figure 4.2. Schubert’s triangle for tangency of quadrics in 3-space.

Regarding characteristic numbers for surfaces in projective space, much less is known
when it comes to higher degree. The only case where all characteristic numbers were found
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is cubic surfaces. This case is worked out in my article [BDFK23], which is not part of this
dissertation.

Our study centers around Schubert’s triangle which is displayed in Figure 4.2. For each
triple (α,β, γ) ∈ N3 with α + β + γ = 9, the triangle shows the number pαℓβhγ of quadrics
that pass through α given points, are tangent to β given lines, and are tangent to γ given
planes. The two pictures, in blue and red, illustrate the geometric meaning of the entries
p3ℓ3h3 = 104 and p2ℓ5h2 = 128.

Schubert derives these numbers in [Sch79, §22]. In [Sch79, page 106] he argues as follows.
Quadrics degenerate into complete flags, consisting of a point on a line in a plane in P3.
Such a flag counts with multiplicity two, since q = 2(p+ ℓ+h), by Proposition 4.2.3. We seek
quadrics that satisfy one of the three tangency conditions, for each of the nine given flags.
The number of such quadrics equals

q9
= 29

∑
α+β+γ=9

9!
α!β!γ! ⋅ p

αℓβhγ
= 29

(⋯+ 1680 ⋅ 104 +⋯ + 756 ⋅ 128 +⋯ ). (4.2.1)

The second equation is in the cohomology ring of the space of complete quadrics. In (4.2.1) we
multiply each entry in Schubert’s triangle with the corresponding trinomial coefficient 9!

α!β!γ! ,
we add up the products, we multiply the sum by 29 = 512, and we obtain q9 = 666841088.
This derivation is the analogue in P3 of the pentagon count for the 25(p + ℓ)5 = 3264 conics
in [BST20, Figure 3].

Schubert’s calculus predicts the number of complex solutions to a system of polynomial
equations that depend on geometric figures like lines and planes in P3. In what follows, we
study these polynomial equations and present practical tools for solving them. Our main
interest is in solutions over the real numbers R.

4.2.1. Coordinates and equations

We begin with the coordinates that describe our geometric figures. A point P in P3 is
represented by a vector p = (p1, p2, p3, p4). A line can be given by a 2 × 4 matrix L, and a
plane by a 3 × 4 matrix H. We often use Plücker coordinates

ℓ = (ℓ12, ℓ13, ℓ14, ℓ23, ℓ24, ℓ34) and h = (h234,−h134, h124,−h123).

Here ℓij is the 2 × 2 minor of L with column indices i and j. Note the Plücker relation
ℓ12ℓ34 − ℓ13ℓ24 + ℓ14ℓ23 = 0. Likewise, hijk denote the 3 × 3 minors of H.

Remark 4.2.1. Inclusion relations are written in Plücker coordinates as follows:

P ⊂H ∶ p1h234 − p2h134 + p3h124 − p4h123,

P ⊂ L ∶
p1ℓ23 − p2ℓ13 + p3ℓ12 , p1ℓ24 − p2ℓ14 + p4ℓ12,
p1ℓ34 − p3ℓ14 + p4ℓ13 , p2ℓ34 − p3ℓ24 + p4ℓ23,

L ⊂H ∶
ℓ12h134 − ℓ13h124 + ℓ14h123 , ℓ12h234 − ℓ23h124 + ℓ24h123,
ℓ13h234 − ℓ23h134 + ℓ34h123 , ℓ14h234 − ℓ24h134 + ℓ34h124.

A triple (P,L,H) satisfying P ⊂ L ⊂H is called a complete flag. The variety of complete flags
is irreducible of dimension six in P3×P5×P3. The prime ideal of this flag variety is generated
by the nine quadrics above, together with the Plücker relation. These ten generators form a
Gröbner basis [MS04, Theorem 14.6].
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Each quadric in P3 is represented by a symmetric 4 × 4 matrix X = (xij). The point P
lies on the quadric X if PXP T = 0. Similarly, the condition for X to be tangent to a line L
or to a plane H is given by the vanishing of the polynomial

det(LXLT
) = ℓ(∧2X)ℓ

T or det(HXHT
) = h(∧3X)h

T . (4.2.2)

Here ∧iX denotes the i-th exterior power of the 4 × 4 matrix X. The entries of ∧iX are the
i × i minors of X. The rows and columns are labeled so that (4.2.2) holds.

Suppose we are given α points Pi, β lines Lj , and γ planes Hk, all generic, where α+β+γ =
9. We wish to solve these nine homogeneous equations for X:

PiXP
T
i = det(LjXL

T
j ) = det(HkXH

T
k ) = 0 for 1 ≤ i ≤ α, 1 ≤ j ≤ β, 1 ≤ k ≤ γ. (4.2.3)

Here X is an unknown symmetric 4 × 4 matrix, viewed as a point in P9, that satisfies
det(X) /= 0. Bézout’s Theorem suggests that the number of complex solutions to (4.2.3)
equals 1α2β3γ . This number is correct when α ≥ 4 and γ ≤ 2. In all other cases, the
equations (4.2.3) have extraneous solutions that are removed by saturation with respect to
the ideal ⟨det(X)⟩. This saturation step can be carried out in Macaulay2 [GS]. For each
choice of (α,β, γ), we obtain a Gröbner basis that reveals the number of solutions in P9. This
computation proves the correctness of Schubert’s triangle. For solving (4.2.3) numerically,
see Subsection 4.2.4.

We next discuss the condition for X to be tangent to a fixed quadric U = (uij).

Lemma 4.2.2. The condition for two quadrics U and X to be tangent in P3 is given by
the discriminant of the quartic f(t) = det(U + tX). This is an irreducible polynomial with
67753552 terms of degree (12,12) in the 20 unknowns uij , xij.

Proof. The tangency condition means that the intersection curve of the quadrics U and X is
singular in P3. By the Cayley trick of elimination theory [GKZ94a, §3.2.D], this is singular if
and only if the line spanned by U and X in P9 is tangent to the hypersurface {det(X) = 0}.
That condition is given by the discriminant of f(t), which is known as the Hurwitz form of
{det(X) = 0}. We found its expansion into 67753552 monomials with the computer algebra
system Maple. ∎

We denote the above discriminant by Σ(U,X). If U is a symmetric matrix with random
entries in R or C then Σ(U,X) is a polynomial of degree 12 in ten unknowns xij with 241592
terms. Given nine quadrics U1, . . . , U9 in P3, the quadrics tangent to these solve the following
equations in P9:

Σ(U1,X) = Σ(U2,X) = ⋯ = Σ(U9,X) = 0 and det(X) /= 0. (4.2.4)

Bézout’s Theorem suggests that the nine equations have 129 complex solutions, but the
inequation decreases that number to q9 = 666841088. We derived this number in Equa-
tion (4.2.1). A key ingredient was the identity q = 2(p + ℓ + h).

We next prove this identity by an explicit geometric degeneration. Let V be an invertible
real 4× 4 matrix, and let P ⊂ L ⊂H be the flag given by its first three rows. We introduce a
parameter ϵ > 0, and we consider the quadric defined by

Uϵ = V −1
⋅ diag(ϵ3, ϵ2, ϵ,1) ⋅ (V −1

)
T . (4.2.5)

We investigate the behavior of the tangency condition for Uϵ and X, as ϵ→ 0.
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Proposition 4.2.3. The leading form in ϵ of the specialized Hurwitz form equals

Σ(Uϵ,X) = (PXP
T
)

2
⋅ det(LXLT

)
2
⋅ det(HXHT

)
2
⋅ ϵ8 + higher terms in ϵ. (4.2.6)

This implies the identity q = 2(p + ℓ + h) in the appropriate cohomology ring.

Proof. The factorization in (4.2.6) can be seen directly from the discriminant of

f(t) = det(Uϵ + tX) = c0 + c1t + c2t
2
+ c3t

3
+ c4t

4.

The coefficients ci are polynomials in ϵ with orders of vanishing 6,3,1,0,0 at ϵ = 0. The
discriminant has vanishing order 8 at ϵ = 0, and this order is uniquely attained by its
monomial c2

1c
2
2c

2
3. The factors c1, c2, c3 map to those in (4.2.6). ∎

4.2.2. Complete quadrics
A geometric setting for our tangency problems is the space of complete quadrics. By

definition, this is the variety obtained as the closure of the image of the map

P9
⇢ P9

× P20
× P9 , X ↦ (X, ∧2X, ∧3X) =∶ (X,Y,Z). (4.2.7)

Here X = (xij) and Z = (zijk,lmn) are symmetric 4×4 matrices and Y = (yij,kl) is a symmetric
6 × 6 matrix. The rows and columns of Y and Z are indexed just like the entries of ℓ and
h. The N3-homogeneous ideal I4 of that 9-dimensional variety lives in the polynomial ring
Q[X,Y,Z] in 10 + 21 + 10 = 41 unknowns.

Theorem 4.2.4. The space of complete quadrics is a smooth variety of dimension nine. Its
prime ideal I4 is minimally generated by 164 polynomials, namely
● one linear form of degree (010), i.e. y12,34 − y13,24 + y14,23,
● 20 quadrics of degree (020), e.g. y12,24y24,34 − y13,24y24,24 + y14,24y23,24,
● 15 quadrics of degree (101), e.g. x11z123,234 − x12z123,134 + x13z123,124 − x14z123,123,
● 64 quadrics of degree (011), e.g. y12,13z123,134 − y13,13z123,124 + y13,14z123,123,
● 64 quadrics of degree (110), e.g. x11y12,23 − x12y12,13 + x13y12,12.
Schubert’s triangle in Figure 4.2 equals the multidegree of I4 in the N3-grading.

Proof. The closure of the image of (4.2.7) is irreducible of dimension nine since X appears in
the first coordinate. The smoothness of this variety is well-known in the theory of spherical
varieties. For a new perspective and proof see [MMW21, §3.C].

The 164 polynomials were found by computation using Macaulay2 [GS]. To show that
they generate the prime ideal I4, we use [GSS05, Proposition 23] inductively. We eliminate
one variable that occurs linearly in some equation and is not a zero-divisor modulo the
current ideal. After checking these hypotheses, we replace the ideal by the elimination ideal,
which is prime by induction. This process was found to work for various natural orderings
of the entries in X,Y,Z.

The multidegree is a standard construction for multigraded commutative rings [MS04,
Section 8.5]. For a variety in a product of projective spaces, it is the class of that variety in the
cohomology ring of the ambient space. The built-in command multidegree in Macaulay2
takes only a few seconds to find the multidegree from our 164 polynomials. The output of
this Macaulay2 computation is a ternary form in the unknowns T0, T1, T2. It has 55 terms of
degree codim(I4) = 29. The coefficient of T 9−α

0 T 20−β
1 T 9−γ

2 is the number pαℓβhγ in Figure 4.2.
This computation is an ab initio derivation of Schubert’s triangle. ∎
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The variety V (I4) captures degenerations of quadrics that matter in intersection theory
[MMW21]. We saw this in Proposition 4.2.3 where the quadric becomes a flag P ⊂ L ⊂ H.
The relationship to the flag variety is made precise as follows:

Corollary 4.2.5. The variety of complete flags in P3 is the inverse image of V (I4) under
the componentwise Veronese embedding P3 × P5 × P3 ↪ P9 × P20 × P9.

Proof. The Veronese map takes (p, ℓ, h) to the rank one matrices (X,Y,Z) = (pT p, ℓT ℓ, hTh).
Substituting this into I4 and saturating by the irrelevant ideal of P3 × P5 × P3 yields the
Gröbner basis for the flag variety in Remark 4.2.1. ∎

We next lift our tangency conditions from the space P9 of symmetric matrices X to the
space of complete quadrics in P9×P20×P9. We write B = ⟨X⟩ ∩ ⟨Y ⟩ ∩ ⟨Z⟩ for the irrelevant
ideal of that product of projective spaces.

The condition that a quadric contains a point p is the linear form pXpT in the unknown
X. Similarly, tangency to a line ℓ is the linear form ℓY ℓT in the unknown Y , and tangency
to a plane h is the linear form hZhT in the unknown Z. Without loss of generality, we can
assume that one given figure is a coordinate subspace in P3. Then the three linear forms are
variables x11, y12,12 or z123,123.

However, if we augment I4 by one such variable then the resulting ideal is not prime. To
get the correct prime ideal we must saturate by the irrelevant ideal B. We first summarize
what happens when we add the constraint for a point. The result is the same for the plane
constraint if we swap the roles of X and Z.

Proposition 4.2.6. The saturation ((I4 + ⟨x11⟩) ∶ B
∞) is the prime ideal of the variety of

complete quadrics that contain a given point. It has 13 minimal generators in addition to the
164 generators of I4, namely ten of degree (020) and one each of degree (100), (003) and
(011). The multidegree of this ideal is the triangle of size eight that is obtained by deleting
the lower right edge in Figure 4.2.

Proof. This is proved by a Macaulay2 computation. The new equation of degree (100) is
x11. The new equation of degree (003) is the complementary 3 × 3 minor of Z. Generators
of degree (020) arise from Bareiss formula which says that x11 times any 3 × 3 minor of X
containing x11 equals a 2 × 2 minor of Y . ∎

Proposition 4.2.7. The saturation ((I4+ ⟨y12,12⟩) ∶ B
∞) is the prime ideal for the complete

quadrics that are tangent to a line. It has three minimal generators, of degrees (010), (200),
(002), in addition to the 164 generators of I4. This is one entry of Y and the corresponding
2 × 2 minors of X and Z. The multidegree is the triangle of size eight obtained by deleting
the top edge in Figure 4.2.

It would be desirable to extend Theorem 4.2.4 to n×n matrices for n ≥ 5, i.e. to identify
minimal generators for the multihomogeneous prime ideal of the space of complete quadrics.
These are relations among all minors of a symmetric n×n matrix that respect the fine grading
coming from the size of the minors. Results by Bruns et al. [BCV13] indicate that relations
of degree ≤ 2 will not suffice.

4.2.3. Schubert’s triangle
At present, we have the following result on the reality of Schubert’s triangle.
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Theorem 4.2.8. For at least 46 of the 55 problems in Schubert’s triangle, there exists an
open set of real instances, consisting of α points, β lines and γ planes, such that all complex
solutions in P9 to the polynomial equations in (4.2.3) are real. For the other nine problems,
the current status is summarized in Remark 4.2.10.

Example 4.2.9. Fix (α,β, γ) = (3,3,3). We consider the configuration

p = (1, 439
922 ,−

347
271 ,

67
343) , (1,−

211
484 ,

153
346 ,

257
254) , (1,−

575
404 ,

131
320 ,−

37
42),

ℓ = (− 92
159 ,−

92
293 ,

120
307 ,

77
256 ,

76
391 ,

96
311) , (

107
114 ,

18
383 ,−

109
116 ,

37
217 ,

45
307 ,

47
264) ,

(−365
302 ,−

45
368 ,

172
209 ,

74
245 ,

25
62 ,

87
353),

h = (193
182 ,

75
397 ,−

244
631 ,

195
272) , (

91
307 ,−

17
122 ,−

553
837 ,

70
309) , (

919
295 ,

103
36 ,

1199
371 ,

57
176).

All 104 complex quadrics tangent to these nine figures are found to be real. Thus, this is a
fully real instance for the scenario shown in blue in Figure 4.2.

Remark 4.2.10. Up to the natural involution, given by swapping points and planes, there
are 30 distinct tangency problems in Schubert’s triangle. For five of the problems we have
not yet succeeded in verifying reality. They are as follows:

(α,β, γ) (3,4,2) (3,5,1) (2,6,1) (1,7,1) (1,8,0)
Schubert’s count over C 112 80 104 104 92

Our current record over R 110 74 96 84 84

For instance, we know two points, six lines and a plane in P3
R such that 96 real quadrics

are tangent to these figures. The remaining eight quadrics are complex. This is derived
from Example 4.2.11 by replacing point P3 with a plane. For the (1,8,0) case with 84 real
solutions we use eight tangent lines as in Example 4.2.13.

Discussion and proof of Theorem 4.2.8. All our instances of full reality or maximal reality,
along with the software that certifies correctness, can be found at

https://mathrepo.mis.mpg.de/TangentQuadricsInThreeSpace (4.2.8)

For instance, for (α,β, γ) = (3,3,3), this website contains the configuration in Example
4.2.9, along with the 104 tangent quadrics. Each quadric is determined by its nine points of
tangency. The coordinates of these points form a 104×9×4 tensor of floating point numbers
in Julia format. The proof of correctness was carried out with the certification technique
in [BRT20], as discussed in Subsection 4.2.4. ∎

We now present some ideas that were helpful in creating fully real instances. Figures
given by the standard basis e1, e2, e3, e4 lead to sparse equations in (4.2.3).

Example 4.2.11. The condition for X to be tangent to the six coordinate lines is

I = ⟨xiixjj − x
2
ij ∶ 1 ≤ i < j ≤ 4 ⟩. (4.2.9)

This is the complete intersection of eight prime ideals, each isomorphic to the ideal J gen-
erated by all 2 × 2 minors of X. The eight primes are Uijk ⋆ J , where ⋆ is the Hadamard
product, and Uijk is the 4× 4 matrix with entries (−1)i, (−1)j and (−1)k in positions (2,3),
(2,4) and (3,4), and entries 1 everywhere else. Seven of these scaled Veronese varieties
contain matrices of rank 3 or 4. Their union is defined by the radical ideal (I ∶ J), which

https://mathrepo.mis.mpg.de/TangentQuadricsInThreeSpace/index.html
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has degree 56. This is Schubert’s number for α = 3, β = 6, γ = 0. We seek three points such
that all 56 quadrics containing these and satisfying I are real. One choice that works is

P1 = (1,2,8,7), P2 = (1,1,9,2), P3 = (2,5,3,1).

Our six given lines meet pairwise, and they are not generic. This leads to 48 of the 56
quadrics being cones. To get 56 smooth quadrics, one perturbs the lines.

We refer to the article [KW18] by Kahle and Wagner for a general study of the ideal of
principal 2 × 2 minors of a symmetric n × n matrix of unknowns. Their results elucidate the
decomposition we found for the special case n = 4 in (4.2.9).

Example 4.2.12. The condition for X to be tangent to the four coordinate planes is the
ideal generated by the four principal 3× 3 minors. Saturating by the ideal of all 3× 3 minors
yields a prime ideal K of codimension 4 and degree 21. This is Schubert’s number for
α = 5, β = 0, γ = 4. It is easy to find five points so that all 21 quadrics containing these and
satisfying K are real. This instance is generic.

The ideal K is generated by 10 cubics and 12 quartics. The 5-dimensional variety cut
out by K in P9 has the following nice parametric representation:

X =

⎛
⎜
⎜
⎜
⎝

x12x13x14 x12 x13 x14
x12 x12x23x24 x23 x24
x13 x23 x13x23x34 x34
x14 x24 x34 x14x24x34

⎞
⎟
⎟
⎟
⎠

where det
⎛
⎜
⎝

x12x34 1 1
1 x13x24 1
1 1 x14x24

⎞
⎟
⎠
= 0.

Our final technique was inspired by the solution to Shapiro’s conjecture [Sot10].

Example 4.2.13. Consider the lines ℓ = (1,2t,3t2, t2,2t3, t4) that are tangent to the twisted
cubic curve {(1 ∶ t ∶ t2 ∶ t3)}. There is a surface of quadrics tangent to all such lines. We
choose nine nearby lines, by slightly perturbing nine tangent lines. Our fully real instance
for (α,β, γ) = (0,9,0) was found in this manner.

4.2.4. Numerical methods
We now explain our techniques for solving the equations (4.2.3) and for certifying the

correctness of their solutions. Each instance is presented in the Plücker coordinates of
Remark 4.2.1. Following (4.2.2) and Subsection 4.2.2, each line specifies a linear equation in
Y = ∧2X and each plane gives a linear equation in Z = ∧3X.

We now go over our steps in solving the system for the instance in Example 4.2.9. The
input is a system of 11 equations in 11 unknowns, namely the ten entries of the matrix X
and one more variable D. One equation is D = det(X), another specifies a random affine
chart, ∑1≤i<j≤4 cijxij = 1, and the others are the tangency conditions. Our equations are
entered into HomotopyContinuation.jl:

Equations=System(vcat(Point_Conditions,
Line_Conditions,
Plane_Conditions,
det(X)-D, Affine_Chart))

After entering S=solve(Equations), the following output appears:
This suggests that the program tracked 216 = 1α2β3γ paths from a total degree start system
and that it found 104 real nonsingular solutions. The variable S is a 104-element array of
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Tracking 216 paths... 100% |||||||||||||||| Time: 0:00:11
# paths tracked: 216
# non-singular solutions (real): 104 (104)
# singular endpoints (real): 84 (83)
# total solutions (real): 188 (187)

quadric=solutions(S)[17]
@var x[1:4]
Quadric=expand(x’*(X(Equations.variables=>real(quadric)))*x)

-2.974732003076*x2*x1-1.289476735251*x2*x3-10.97658863786*x3*x1+
+8.372046844711*x4*x1+8.886907306683*x4*x2+9.704839838537*x4*x3+
-5.810893956281*x1^2+2.645663598009*x2^2-5.046922439351*x3^2+0.6937980589394*x4^2

solutions, each of which is an 11-element array of floating point numbers. The first coordinate
is D, and the last ten are the coordinates of X.

The following code extracts the 17-th element of S and prints that quadric:
These Julia fragments give a first impression. The details may be found at (4.2.8).

One key question about numerical output is whether it can serve as a mathematical
proof. How can we be sure that the 104 solutions are indeed solutions and moreover, that
they are distinct, real, and nondegenerate? This is addressed by the process of a-posteriori
certification, which generates an actual proof.

We carry this out using the Krawczyk method, implemented by Breiding, Rose and Timme
[BRT20]. It is based on interval arithmetic and is now available as a standard feature
in HomotopyContinuation.jl. We note that this implementation represents a significant
advance over Smale’s α-certification that was used for the 3264 real quadrics in [BST20,
Proposition 1]. This advance has two aspects. First, the new method in [BRT20] is much
faster. Second, its output gives a bounding box, allowing us to easily certify that the quadrics
are nondegenerate.

We now show how certification works for our instance. The input is easy:

C=certify(Equations,S)

The program creates a certificate C, and it reports on that as follows:

CertificationResult
===================
• 104 solutions given
• 104 certified solutions (104 real)
• 104 distinct certified solutions (104 real)

The certificate C is a list of 104 lists of 22 intervals I1, . . . , I11, J1, . . . , J11 in R. The product
B =∏11

i=1(Ii + im ⋅ Ji) is a box in C11 ≃ R22. That box provably contains a unique solution to
Equations, verified by interval arithmetic.

Checking that these boxes are disjoint proves that the 104 solutions are distinct. Checking
that B is the only box which intersects the complex conjugate of B itself proves that this
solution is real. Checking that 0 is not contained in I1, the interval for the unknown D proves
that the quadric is nondegenerate.

The following command displays the certifying box B for the 17-th quadric:
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C.certificates[17].certified_solution

(1.459827495775684e-6 ± 2.2938e-14) + (0.0 ± 2.2938e-14)im
(-0.9684823260468921 ± 1.516e-09) + (0.0 ± 1.516e-09)im
(-0.24789433358973637 ± 2.2975e-11) + (0.0 ± 2.2975e-11)im
(0.44094393300164797 ± 1.1016e-09) + (0.0 ± 1.1016e-09)im
(-0.9147157198219121 ± 1.3088e-09) + (0.0 ± 1.3088e-09)im
(-0.10745639460424983 ± 3.3522e-10) + (0.0 ± 3.3522e-10)im
(-0.8411537398918771 ± 1.0251e-09) + (0.0 ± 1.0251e-09)im
(0.6976705703926359 ± 9.7633e-10) + (0.0 ± 9.7633e-10)im
(0.7405756088903332 ± 1.1508e-09) + (0.0 ± 1.1508e-09)im
(0.8087366532114602 ± 1.202e-09) + (0.0 ± 1.202e-09)im
(0.11563300982325174 ± 7.2217e-10) + (0.0 ± 7.2217e-10)im

Remark 4.2.14. Finding the fully real instances for Theorem 4.2.8 was a challenge. We
implemented a heuristic hill-climbing algorithm similar to the one in [Die98]. The idea is
to begin at some configuration C of α real points, β real lines, and γ real planes, solve
the equations, and sample many nearby instances. If one has more real solutions, then
C is updated to be that instance. Otherwise, the new C is the instance with the same
number of real solutions, but whose complex solutions are closest to becoming real. This
is measured by the minimum norm of the complex parts of each nonreal solution. In this
fashion, one greedily travels through the parameter space towards instances with more real
solutions. A major issue with such methods is that they get stuck in local maxima. Our
success came from many iterations beginning at different randomly chosen parameters. A
host of numerical tolerances determine the behavior of this algorithm. Once the number of
real solutions approaches the maximum, the instances often become so ill-conditioned that
serious monitoring of these tolerances is required.

4.2.5. Schubert’s pyramid

We now finally come to the analogue in P3 of the number 3264. The following conjecture
motivated this project. We hope that it can be resolved in the future.

Conjecture 4.2.15. There exist nine quadrics in P3
R such that all 666841088 complex

quadrics that are tangent to these nine are defined over the real numbers R.

We propose a combinatorial gadget for approaching this problem. Schubert’s pyramid is a
tetrahedron of 220 intersection numbers pαℓβhγqδ, where (α,β, γ, δ) ∈ N4 with α+β+γ+δ = 9.
Here q = 2(p + ℓ + h) denotes the cohomology class of the complete quadrics tangent to a
given quadric in P3. Thus the pyramid organizes the number of quadrics tangent to nine
figures, as in Figure 4.3.

The levels in Schubert’s pyramid are the triangles for fixed δ. Each entry in level δ is
twice the sum of the three entries in level δ − 1 that lie below it. For instance, for δ = 2 we
marked 3712 = 2 ⋅(576+576+704). This counts quadrics through two points that are tangent
to three lines, two planes and two quadrics.

Making Schubert’s triangle fully real is only a first step towards Conjecture 4.2.15. What
we really want is to find one single instance of nine real flags:

P1 ⊂ L1 ⊂H1 , P2 ⊂ L2 ⊂H2 , . . . , P9 ⊂ L9 ⊂H9. (4.2.10)
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Figure 4.3. Two consecutive levels in Schubert’s pyramid

We want those nine flags to exhibit full reality, simultaneously for all their many tan-
gency problems. Such a configuration (4.2.10) would be the 3-dimensional analogue to the
pentagon in [BST20, Figure 3]. To state this precisely, we consider an arbitrary function
ψ ∶ {1,2, . . . ,9}→ {P,L,H}. This defines a polynomial system

det(ψ(i)i ⋅X ⋅ ψ(i)Ti ) = 0 for i = 1,2, . . . ,9. (4.2.11)

This has the form (4.2.3), where α = ∣ψ−1(P )∣, β = ∣ψ−1(L)∣, and γ = ∣ψ−1(H)∣. Thus, an
instance (4.2.10) of nine flags gives a collection of 39 polynomial systems. For each of these,
the number of solutions is one entry in Schubert’s triangle.
Conjecture 4.2.16. There exist nine real flags (4.2.10) in P3 such that each complex solution
X to any of the 39 associated polynomial systems (4.2.11) is a real quadric.

If Conjecture 4.2.16 is true, then we can approach Conjecture 4.2.15 as follows. We
are given (p + ℓ + h)9 = 1302424 real quadrics X that solve the 39 systems. Each solution
becomes 29 distinct solutions under the deformation in Proposition 4.2.3, where the nine
flags for ϵ = 0 become nine smooth quadrics for ϵ > 0.This process can be performed in
stages, from the bottom to the top of the pyramid, but its numerical implementation will
not be easy. One hope is that reality can be controlled using the results by Ronga, Tognoli
and Vust in [RTV97].

4.3. Conclusions
We conclude by emphasizing the crucial role of mathematical software programs in achiev-

ing the results presented in Chapters 2–4. Symbolic and numerical computations have in
fact provided an effective way to study and manipulate objects we have encountered when
producing new results. Sometimes, even to prove theorems, e.g.Theorems 2.2.3, 3.1.24,
and 4.2.8. Therefore, we consider the complementary coding material an integral part of
this thesis. Findability, accessibility, interoperability, and reusability [WDA+16, FG22] of
the research data produced are guaranteed by the online repository MathRepo (https:
//mathrepo.mis.mpg.de/), for which the author of this thesis operated as a maintainer at
the time of writing the thesis.

https://mathrepo.mis.mpg.de/
https://mathrepo.mis.mpg.de/


132 Feynman integrals for mathematicians

Appendix A

Feynman integrals for mathematicians

This appendix serves as a gentle and light introduction for non-physicists to the theory
of scattering amplitudes in particle physics. We intend to summarize the role of Feynman
integrals in the theory of scattering amplitudes, as well as present various representation
of Feynman integrals. Furthermore, we will explain why such integrals are relevant for the
purposes of this thesis and how they relate to Section 3.2. We refer to [Wei22, MT22] for
additional background on Feynman integrals. See also [Car13, CD13] for a more intuitive
introduction to some of these topics.

Imagine a scattering experiment happening in a high energy collider where incoming
particles smash into each other and a number of outgoing particles are produced from their
collision. A scattering amplitude is a fundamental concept in quantum field theory (QFT)
used to calculate the probability of certain particle interactions with the ultimate purpose
of predicting the outcome of particle collisions. Particle physics is the study of the proper-
ties and interactions of elementary particles, such as bosons, neutrons, protons, and other
particles that make up atoms, and it heavily relies on the concepts and techniques of QFT,
especially scattering amplitudes. Understanding the behavior of these particles can give
insight into the fundamental nature of the universe and help develop new technologies in
engineering.

A breakthrough in computing scattering amplitudes was provided by the method de-
veloped by physicist Richard Feynman in the 1940s. Feynman introduced some diagrams
encoding information on how particle physics collisions unfold. Thus, the Feynman rules
give explicit instructions for associating every such diagram with a function, which we can
use to calculate the probability that this process actually occurs. For instance, it cannot
happen that one boson decays into two bosons of exactly the same type; that would violate
energy conservation. But one heavy particle can decay into different, lighter particles.

Assume n is the number of incoming and outgoing particles. More formally, the scattering
amplitude is defined as a complex-valued function of the momenta, associated to a scattering
process, namely

A(p1, p2, . . . , pn) ∶ (R1,D−1
)

n
Ð→ C, (A.1)

where the pi = (p
0
i , p

1
i , . . . , p

D−1
i ) for i = 1,2, . . . , n denote the momenta vectors one associates

to each particle. These are vectors in the D-dimensional Minkowski momentum space R1,D−1

endowed with the pairing p ⋅ q = p0q0 − p1q1 − ⋅ ⋅ ⋅ − pD−1qD−1. We write p2 to denote p ⋅ p,
where the product is the pairing in Minkowski space. The most interesting case in physics
is when D = 4, i.e., one dimension corresponds to time and the other three correspond to
space dimensions. The momentum vectors capture important physical information about
the particles in the scattering experiment, such as their mass and velocity. This is made
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more explicit below. Furthermore, momentum conservation imposes the relation

±p1 ± p2 + ⋅ ⋅ ⋅ ± pn = 0, (A.2)

where the ± sign of each pi depends on whether they represent ingoing (+) or outgoing
(−) particles. The modulus squared of the scattering amplitude (A.1) can be interpreted
as a joint probability density function describing what to expect for the outcome of the
experiment.

In perturbative theory, namely in the Feynman integral approach, the scattering ampli-
tude is represented as a sum over all possible paths that the system could take between the
initial and final states. Formally,

A(p1, p2, . . . , pn) = ∑
G

aG ⋅ IG, (A.3)

where the sum is over all possible Feynman diagrams G. The contribution IG denotes
the Feynman integral corresponding to a diagram G. The way this integral is defined is
determined by the Feynman rules, as explained in the next section. Finally, each factor
aG can be thoughts as a number that depends on the properties of the particles involved.
Therefore, each Feynman diagram G is associated with a specific term in the perturbative
expansion (A.3), and the scattering amplitude is obtained by summing up the contributions
from all the diagrams. A standard strategy to study the analytic properties of the amplitude
A is to study those of the summands IG in (A.3).

Feynman diagrams are graphical representations of the different ways particles can in-
teract: particles are represented by lines, and the lines can be thought of as representing the
motion of the particles over time, in fact they can be directed towards or away from each
other and can also split or merge, depending on the process being represented; the vertices
can be thought of as representing the instant when two or more particles come into contact
and interact with each other. Here are some possibilities:

p1

p2 p3

p4

p1 p1

p2 p2p3 p3

p4 p4

Figure A.1. An example of a tree, a one-loop, and a two-loops Feynman diagram for
n = 4 particles. For a physical explanation of the tree on the left see [CD13].

The sum in (A.3) is usually infinite. This process is only useful if the contribution
corresponding to each diagram decreases with the complexity of the diagrams, which can
be the case. Roughly speaking, each vertex in a Feynman diagram carries a number, i.e.,
the coupling constant for a prescribed theory, which indicates how strongly the particles
interact. In more complicated diagrams, with a higher number of vertices, the resulting
Feynman integral is proportional to the coupling constant raised to the power of the number
of vertices. So, if the coupling constant is less than one, that number gets smaller and smaller
as the diagrams become more and more complicated. In practice, one can often get very
accurate results from just the simplest Feynman diagrams.

There are several parameterizations of Feynman integrals. In the next sections, we in-
troduce a selection of them in this order: Loop-momentum, Schwinger parameter, Feynman
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parameter, and Lee-Pomeransky. The one-loop Feynman diagram in Figure A.1 (center) will
serve as running example when illustrating these integral representations. This diagram is
also known as the box diagram in the physics literature.

Representations of Feynman integrals
A Feynman diagram G is a connected oriented graph with nG external legs (open edges),

EG internal edges, as well as LG independent loops and VG nodes, where

LG = EG − VG + 1, (A.4)

since G is connected. Recall that the nG external edges correspond to the incoming and
outgoing particles. To each external edge we also associate a momentum vector pi ∈ R1,D−1.
In the subsequent paragraphs, we will remove the subscript G for the numbers introduced
above; however, they need to be understood as varying depending on the Feynman diagram
one fixes. A collection of Feynman diagrams can be found in [MT22, Figure 1].

Loop-momentum
Recall that a Feynman diagram G is also oriented, i.e., each edge has an arbitrary orien-

tation. However, the resulting integral IG is independent of the choice of the orientation. To
each internal edge corresponds a momentum vector qe ∈ R1,D−1, and the mass me ∈ R≥0 of the
particle propagating along edge e, for e = 1, . . . . ,E. Momentum conservation at each node
of the diagram imposes that the sum of incoming momenta equals the sum of the outgoing
momenta, hence we obtain a linear equation in pi, qe for each node of the diagram.

Moreover, these equations allow us to write the internal momenta qe in terms of the ex-
ternal momenta pi and L other independent parameters, called the loop momenta ℓ1, . . . , ℓL.

Example A.1. When the Feynman diagram is the box diagram, we write G = ◻. Thus, we
have n◻ = 4, L◻ = 1, and E◻ = 4. We label the internal edges and external legs as illustrated
in Figure A.2:

p1

p2 p3

p4

q1

q2

q3

q4

Figure A.2. The one-loop box diagram.

Momentum conservation at each node imposes the relations

p1 = q1 + q4, p2 + q1 = q2, p3 = q2 + q3, and p4 + q3 = q4.

Setting q1 = ℓ, we obtain p1 = ℓ + q4, p2 + ℓ = q2, p3 = q2 + q3, and p4 + q3 = q4, which implies
the overall momentum conservation (A.2), i.e. p1 + p2 − p3 − p4 = 0.

Hence, momentum conservation fixes the internal momenta qe up to L degrees of freedom.
In the loop-momenta representation, the Feynman integral IG can be expressed as an integral
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over all possible loop momenta ℓ1, . . . , ℓL. The integration domain is (R1,D−1)L, where the
j-th factor in R1,D−1 has coordinates ℓ0i , . . . , ℓD−1

i . The integrand is defined to be a product
over all internal edges of the diagram G, in which the factor corresponding to the e-th edge is
i(q2

e−m
2
e)
−1, where i =

√
−1. Here it is understood that qe is expressed as a linear combination

of the external momenta pj and the loop momenta ℓj . The integral reads

IG =
1

πD/2 ∫(R1,D−1)L

E

∏
e=1

1
(qe(ℓ1, . . . , ℓL, p1, . . . , pn)

2 −m2
e)

νe
dDLℓ, (A.5)

where dDLℓ = dℓ01∧⋅ ⋅ ⋅∧dℓD−1
1 ∧⋅ ⋅ ⋅∧dℓ0L∧⋅ ⋅ ⋅∧dℓD−1

L and the exponents νe are integers. In order
to avoid singularities along the integration contour, one can sum iϵ to each denominator,
where ϵ in an infinitesimal positive parameter. This machinery is known as the Feynman iϵ
prescription.

Example A.2. The momenta vectors appearing in the integral in (A.5) for the box diagram
are given by q1 = ℓ, q2 = p2 + ℓ, q3 = p3 − p2 − ℓ, and q4 = p4 + p3 − p2 − ℓ.

Schwinger parameters
The Schwinger parameter representation, also known as wordline formalism, replaces the

loop momenta integration with some auxiliary integration variables. Let G be a Feynman
diagram as above. To each internal edge e we associate a Schwinger parameter xe ∈ C∗. In
order to define the desired representation, we first need to introduce some graph-theoretical
definitions.

A spanning tree in G is a connected subset of E −L internal edges containing all vertices
of G. We write TG for the set of all spanning tree of the graph G.

Definition A.3. The first Symanzik polynomial is

UG = U ∶= ∑
T ∈TG

∏
xe∉T

xe,

where the product runs over the LG internal edges that were removed from G to obtain the
spanning tree T .

Given S ⊆ {1,2, . . . , nG}, we write TS for the subtree of G containing all the vertices
attached to the external legs labeled by S. A spanning 2-tree TS ⊔TS̄ in G is a disjoint union
(with respect to the set of edges and vertices) of two trees TS and TS̄ in G, containing all
of its vertices. We write TG,S for the set of all spanning 2-trees such that TS contains the
vertices attached to the external legs labeled by S, and no vertices attached to external legs
labeled by the complementary set S̄ = {1,2, . . . , nG} ∖ S.

Definition A.4. For a set S ⊂ {1, . . . , nG}, define

FG,S ∶= ∑
TS⊔TS̄∈TG,S

∏
e∉TS ,TS̄

xe.

The second Symanzik polynomial is given as

FG = F ∶= ∑
S,S̄∈PG

(∑
i∈S

pi)

2
FG,S −

⎛

⎝

EG

∑
e=1

m2
exe
⎞

⎠
⋅ UG,

where PG denotes the set of all partitions of the n external legs into two disjoint non-empty
sets S and S̄.
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In the Schwinger parameters, the first and second Symanzik polynomials are homoge-
neous of degree, L and L + 1, and at most linear and quadratic in each individual xe,
respectively. Moreover, the first Symanzic polynomial U does not depend on the external
parameters pi,me, see [Wei22, Chapter 3].

Example A.5. Consider the diagram G = ◻ as in Figure A.2, where we replace each internal
momentum qe with an analogously labeled Schwiger parameter xe. Then, the set of spanning
trees T◻ contains precisely the four trees one attains by deleting a single internal edge. Hence:

U◻ = x1 + x2 + x3 + x4.

The second Symanzik polynomial is instead given by

F◻ = p
2
1x1x4 + p

2
2x1x2 + p

2
3x2x3 + p

2
4x3x4 + (p1 + p4)

2x1x3 + (p1 + p2)
2x2x4

− (m2
1x1 +m

2
2x2 +m

2
3x3 +m

2
4x4)U◻,

where the first six summands correspond to the spanning two trees in Figure A.3.

Figure A.3. The spanning 2-trees for the box diagram. They correspond to the sets
S in Definition A.4 being (in this order): {1},{2},{3},{4},{1,4},{1,2}.

A formula for the Symanzik polynomials of an arbitrary one-loop diagram is given in
[MT22, Section 2.5].

We can finally introduce the Feynman integral in Schwinger parameterization associated
to a diagram G as

IG =
1

∏
E
e=1 Γ(νe)

∫
RE
≥0

(
E

∏
e=1

xνe−1
e )U

−D/2 exp [ i
h
V]dEx, (A.6)

where the measure is dEx ∶=∏E
e=1 dxe and Γ(x) denotes the Gamma function. The function

V is defined as the ratio
V ∶= F/U .

Remark A.6. Integrals of type (A.6) do not always converge. To deal with singularities in
the denominator of (A.6), well-known techniques are dimensional and analytic regularization
which are also relevant for numerical evaluation of the integrals [Wei22].

The equivalence between Feynman integrals in loop-momentum and Schwinger parameter
representation is worked out in [MT22, Appendix A].

Feynman parameter representation
The Feynman parameter representation is one of the most well-known parametric repre-

sentations for Feynman integrals. To introduce it, let a = (a1, . . . , aE) be E complex variables
(Feynman parameters) and δ(x) denote the Dirac delta distribution, then

IG =
Γ(ν −LD/2)
∏

E
e=1 Γ(νe)

∫

∞

0
δ (1 −

E

∑
e=1

ae)(
E

∏
e=1

aνe−1
e )

U(a)ν−(L+1)D/2

F(a)ν−LD/2 dEa, (A.7)
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where U and F are as usual where the xe get replaces by ae, and the measure becomes
dEa ∶=∏E

e=1 dae. Here, ν = ∑E
e=1 νe. We now show how recover the integral in (A.7) from the

Schwinger parameterization. The first step consists in inserting in the integral in (A.6) one
in the form

1 = ∫
∞

0
δ (t −

n

∑
e=1

xe)dt. (A.8)

It is enough to integrate on the positive orthant because of the additional assumption that the
sum of the Schwinger parameters is non-negative. Hence, we apply the change of variables
xe = tae and obtain the following expression

∫

∞

0 ∫
∞

0
δ (1 −

E

∑
e=1

ae)(
E

∏
e=1

aνe−1
e ) tν−LD/2−1

U(a)−D/2 exp [ tF(a)
U(a)

]dExdt.

At this point, with the substitution t→ tU(a)/F(a) we get

∫

∞

0
δ (1 −

E

∑
e=1

ae)(
E

∏
e=1

aνe−1
e )

U(a)ν−(L+1)D/2

F(a)ν−LD/2 dEa∫
∞

0
tν−LD/2−1 exp[−t]dt

where the integral with respect to the variable t equals Γ(ν −LD/2). With this last substi-
tution we attain precisely the integral in Feynman parameter representation.

Lee-Pomeransky
Analogously to the Schwinger representation, the variables that get integrated out in

Lee-Pomeranski representation are the Schwinger parameters. Given E complex variables
ue, here is how a Feynman integral looks like in such a parameterization:

IG =
Γ(D/2)

Γ ((L + 1)D/2 − ν)∏n
e=1 Γ(νe)

∫

∞

0
(

E

∏
e=1

uνe−1
e )G

−D/2dEu, (A.9)

where dEu ∶= ∏E
e=1 due, and G = U + F . In what follows, we show that starting with an

integral of the form (A.9) it is possible to recover the Feynman parameter representation
presented above. For the sake of clarity, we denote Nν the normalizing factor appearing in
(A.9).

We start with the analogous trick involving (A.8) used above. Applying the change of
variables uj = txj we obtain

IG = Nν ⋅ ∫

∞

0 ∫

∞

0
δ(1 −

E

∑
e=1

xe)t
ν
(

E

∏
e=1

xνe−1
e )(tLU(x) + tL+1

F(x))−D/2dExdt

= Nν ⋅ ∫

∞

0
δ(1 −

E

∑
e=1

xe)(
E

∏
e=1

xνe−1
e )dEx∫

∞

0
tν−LD/2−1

(U(x) + tF(x))−D/2dt.

Now we substitute t→ tU(x)/F(x)

IG = Nν ∫

∞

0
δ(1 −

E

∑
e=1

xe)(
E

∏
e=1

xνe−1
e )

U(x)ν−(L+1)D/2−1

F(x)ν−LD/2−1 dEx∫
∞

0
tν−LD/2−1

(1 + t)−D/2dt,

where one can recognize that the integral over t is the second integral representation of
Euler’s beta function:

∫

∞

0
tν−LD/2−1

(1 + t)−D/2dt = Γ(ν −LD/2)Γ((l + 1D/2 − ν))
Γ(D/2)

.
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This final substitution concludes the recovery of the parametric representation. The vari-
ables ue appearing in (A.9) are sometimes called Lee-Pomeransky variables in the physics
literature.

One of the reasons why this representation is relevant for our purposes is that it provides
interesting examples of Euler integrals for which we developed the theory in Section 3.2.

Counting master integrals
As explained in Section 3.2, a first step towards evaluating Feynman integrals consists in

defining a finite-dimensional vector space of such integrals and establishing linear relation-
ships between them. The basis elements of such a vector space are called master integrals in
the physics literature. One of the most popular methods to perform this count and find an
integral basis is based on integration by parts (IBP). The idea is to generate various identities
for integrals of derivatives with respect to loop momenta and use this set of integral relations
to solve the reduction problem. This consists in finding out how a general Feynman integral
can be expressed linearly in terms of some master integrals. A well-known implemented
algorithm used to compute a set of master integrals is the Laporta algorithm [Lap00]. How-
ever, it requires to generate a high number of integral relations and the result is not totally
reliable when it comes to Feynman integrals of diagrams with a high number of vertices and
loops. Therefore, it is very useful to a priori compute the number of master integrals, and
this is where the various vector spaces introduced in Section 3.2 come in handy.

This final part illustrates in an example how to apply the techniques introduced in Section
3.2 to effectively compute the number of master integrals. As above, we fix the Feynman
diagram G to be the box diagram in Figure A.2.

We will consider Feynman integrals in Lee-Pomeransky representation (A.9) since, as
mentioned, they are in the form of generalized Euler integrals. One way to compute the
number of master integrals for I◻ is to determine the Euler characteristic of the variety

X = (C∗)4 ∖ V (G◻),

with G◻ = U◻ + F◻, where the Symanzik polynomials are given in Example A.5. One first
effective way of computing the dimension of the vector space is by using the Julia package
HomotopyContinuation.jl as illustrated in Subsection 3.2.4. Here is how to do it in this
case:

@var x[1:4] s ν[1:4] p[1:4] m[1:4]
L = s*log(U+F) + sum(log(x[i])*ν[i] for i = 1:4)
S = System(differentiate(L,x), parameters = [s;ν;p;m])
monodromy_solve(S)

The result is 15 which is known to be the number of master integrals for the box diagram
with nonzero masses. We can recover the number 15 also as the normalized volume of the
Newton polytope of G. Here is how do do it using the computer algebra system Oscar [OSC]
available as a Julia package:

NPexp = exponents_coefficients(U+F,x);
Q = convex_hull(NPexp[1]’);
factorial(length(x))*volume(Q)

The fact that the number of master integrals coincides with the normalized volume of
the Newton polytope of G is not always true. In this case, the coefficients of the polynomial
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G◻ are generic in the sense of Section 3.2. However, this is not the case for most of Symanzik
polynomials.
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